

WFOS

TMT's **Wide Field Optical Spectrograph (WFOS)** is an imaging and multi-object spectrograph that will be a workhorse instrument for TMT at first light. It is designed for high throughput operation between 0.3 and 1.0 μm , with a field of view of 8.3'x3'. WFOS will also be equipped with an integral field unit (IFU) with four selectable slit widths between 0.25" and 1.5" that will yield fields of view between 20"x4.5" and 20"x27".

The instrument is seeing limited but compatible with a future ground layer adaptive optics (GLAO) upgrade.

WFOS Design Highlight

WFOS includes a Configurable Slit Unit (CSU) that increases the versatility of the instrument. WFOS can quickly be reconfigured if atmospheric conditions change or a target of opportunity arises. The CSU can create 96x5" slits, shown below with the instrument guider and wavefront sensors.

A prototype CSU has been tested for the Keck LRIS2 instrument, using the same technology as the WFOS CSU.

WFOS held a successful midterm Preliminary Design Review in 2025.

- ✉ Principal Investigator: Chuck Steidel
- ✉ Project Scientist: Eric Peng
- ✉ Project Engineers: Jason Fucik and Reston Nash
- ✉ ITCC Lead: Ramya Sethuram
- ✉ NAOJ Lead: Shinobu Ozaki
- ✉ Project Manager: Alastair Heptonstall

Learn more about
TMT Instruments

Caltech

NAOJ
National Astronomical
Observatory of Japan

India
TMT
THIRTY METER TELESCOPE

TMT
THIRTY METER TELESCOPE

WFOS

**Built for Today's Questions –
And Tomorrow's Discoveries**

Canada
NRC-CNR

UNIVERSITY
OF
CALIFORNIA

Department of
Science &
Technology,
Government of
India
संस्कृत विद्या

NINS
National Institutes of Natural Sciences
自然科学研究機構

Caltech

WFOS

Science Highlights

WFOS is designed for a wide array of science, from studying our solar system to observing the faintest, most distant galaxies.

Credit C. Stark and K.G. Lee

WFOS Science Cases

- ⊕ Tomography of the intergalactic medium
- ⊕ UV Properties of high-redshift galaxies
- ⊕ Spectrophotometric study of transient high-energy cataclysmic events
- ⊕ Study of exoplanet atmospheres
- ⊕ Optical follow-up of JWST

WFOS Observing Modes

Resolution	Range (μm)	Slit Width
1500	0.31-1.0	0.75"
3500	0.31-0.447 / 0.43-0.567 0.55-0.795 / 0.75-0.995	0.75"
5000	0.33-0.412 / 0.45-0.561 0.55-0.695 / 0.80-0.994	0.75"
4500	0.31-1.0	0.25"
10,500	0.31-0.447 / 0.43-0.567 0.55-0.795 / 0.75-0.995	0.25"
15,000	0.33-0.412 / 0.45-0.561 0.55-0.695 / 0.80-0.994	0.25"

WFOS has a red and blue spectrograph which can be independently configured to deliver different spectral resolutions over different spectral ranges. The slit width also influences the resolution. The above table provides a partial list of configurations showing the range of possibilities.

WFOS

Driving Requirements

Wavelength Coverage	0.31 - 1.0 μm
Multi-Object Spectroscopy	Simultaneously observe >80 targets
Field of View	8.3 x 3 square arcminutes
High Throughput	>45% over the majority of spectral range
Gravity Invariant Design	Minimizes flexure due to changing gravity vector
Fast Reconfiguration	Maximize on-target time. Time to acquire new target <5 minutes

Blue Channel

Red Channel