

TMT on La Palma or Maunakea. Construction status. Assessment of alternate sites.

Prepared by TMT DEOPS Team For TMT ISDT members Version date: May 26, 2017 TMT.OPS.PRE.17.009.REL01

Overview of Talk

Observatory Construction Phase Update

- Technical development
- The need to identify a site and begin construction
- Assessment of Alternate Sites and the Decision Process
 - Solicitation of proposals
 - Ability of potential sites to support TMT science
 - Site characteristics and system performance
 - The major effort of DEOPS group with AO group
 - Key results
 - Available observing modes and ability to support science
 - ORM supports TMT science, construction and operations

Technical development

Prepared by TMT D

final design phases

All critical systems in construction or

TMT The need to begin on-site construction

- On-site construction is dominating the critical path items in the project schedule
- Project funding is dependent on following a certain pacing
- Uncertainty about permitting timescales and site access for Maunakea
- Necessary to evaluate alternate options for a site for TMT

The site must support the science goals for TMT

The site must support timely construction and operations

Assessment of Alternate Sites and the Decision Process

Solicitation of proposals

- On-site construction must begin by April 2018
 - Board decision planned October 2017
- Following vacation of Hawaii CDUP (Dec. 2015) a call for proposals to host TMT was circulated (Feb. 2016)
 - Proposals included site characteristics, logistical and programmatic information
 - Potential sites after solicitations received:
 - India (Hanle)
 - China (Ali)
 - Mexico (San Pedro Martir)
 - Canary Islands (Observatorio del Roque de los Muchachos)
 - Chile (Mackenna and Honar)
- Initial examination and first down select
 - Due to remoteness both Himalayan sites had very significant logistical concerns and whilst generally very good sites, they were less able to support the specific TMT Science Cases than the others

Assessment of Alternate Sites and the Decision Process

Further investigations of site characteristics

 Large effort by the TMT DEOPS group to develop a confident understanding of the characteristics of potential sites

Main tasks were information gathering and analysis

- Short timescale driven by deadline for decision (Oct. 2016)
- No time for additional site testing Use pre-existing sources of information
- Cross checks of all results from independent data sets
- Investigating concerns and developing data products to allow performance modeling and scientific productivity to be evaluated
- Also solicited a detailed climate change study
- Parallel examination of cost, schedule, technical and logistical issues by project management, project teams and sub-group of TMT board – Very significant effort

Sources of Information

Site	Seeing/ turbulence	Wind	PWV	Clear fraction	Night time temperature	Sky brightness	Transparency	Ground level dust	Relative humidity	Mirror degradation
ORM	Raw data IAC, ESO, NOAA, WHT/ CANARY. Internal TMT analysis	IAC	Guimar station radiosonde soundings. IAC GPS. Internal TMT analysis	CMT logs, Garcia-Gill et al., 2010	IAC, NOT	Steidel Obs. (M. Pedani, 2004, NewAr)	Raw data CMT. Internal TMT analysis Plus LT, Stetson Obs, Steidel Obs.	Raw data TNG. Internal TMT analysis	Raw data NOT. Internal TMT analysis	GTC, LT, Gemini development , CTA testing
SPM	TMT Site testing for Cerro Pelado, SPM	TMT Site testing for Cerro Pelado, SPM	TMT Site testing for Cerro Pelado, SPM	TMT Site testing for Cerro Pelado, SPM	TMT Site testing for Cerro Pelado, SPM	-	Schuster W., Parrao L. & Guichard J., 2002	TMT Site testing for Cerro Pelado, SPM	TMT Site testing for Cerro Pelado, SPM	CTA testing
Honar	TMT Site testing for Tolonchar	Chajnantor Plateau, Perez & Otárola, 2004	Extrapolated from Chajnantor Plateau (Giovanelli et al., 2001)	Erasmus studies and Giovanelli et al., 2001	Extrapolated from CBI Telescope			TMT Site testing for Tolonchar	TMT Site testing for Tolonchar	
Mackenna	TMT Site testing for Armazones	TMT Site testing for Armazones	TMT Site testing for Armazones and Lakicevic et al., 2016, Kerber et al., 2014, Otarola et al., 2015	TMT Site testing for Armazones and Paranal ASCAM	Extrapolated from TMT Site testing for Armazones	Paranal site measurements	Patat, F., 2004	TMT Site testing for Armazones	TMT Site testing for Armazones	CTA testing for Armazones

Assessment of Alternate Sites and the Decision Process

Site characteristics

Comparative results

		ORM	LCO	SPM	Armazones	MK 13N	Honar
					Mackenna		
Parameter	Uncertainty	2250	2500	2790	3114	4050	5400
Usable time fraction	0.03	0.72	0.75	0.80	0.86	0.72	0.79
Median seeing (60 m)	0.05	0.55	0.50	0.57	0.50	0.50	0.51
AO Strehl merit function	0.03	0.93	0.92	0.81	0.92	1.00	0.87
Isoplanatic angle	0.2	2.33	2.05	1.99	2.05	2.55	1.78
Atm. coherence time	0.5	6.0	5.0	5.1	5.0	7.3	5.21
NIR sensitivity (Cohen metric)	0.03	0.74	0.70	0.84	0.80	0.93	1.10
PWV < 2mm	0.03	0.20	0.23	0.26	0.50	0.54	0.76
Mean night temperature	1.0	7.6	13.0	5.4	7.5	2.3	-7.3

Assessment of Alternate Sites and the Decision Process

Site characteristics

Comparative results

[#]From IMACS user guide

[§] Median value for Armazones, TMT site testing

^{\$} 0.132 exc. Mt. Pinatubo eruption

Site characteristics (median values, unless stated)	MKO (USA)	ORM (Spain)	LCO (Chile)
Altitude of site (m)	4050	2250	2500
Fraction of yearly usable time (%)	72	72	75
Seeing at 60m above ground (arcsecond)	0.50	0.55	0.50
Isoplanatic angle (arcsecond)	2.55	2.33	2.05
Atmospheric coherence time (ms)	7.3	6.0	5.0
Precipitable Water Vapor (% of time < 2mm)	54	≥20	23
Adaptive Optics Strehl merit function	1.0	0.93	0.92
Mean nighttime temperature (°C)	2.3	7.6	13.0
Extinction (V mag/airmass)	0.111	0.137 ^{\$}	0.14#
Ground dust concentration (μ g/m ³)	0.815	1.006	2.289 §
Prepared by TMT DEOPS		\rightarrow	$ \rightarrow $

Assessment of Alternate Sites and the Decision Process

Site characteristics

- Key results and examples
 - Ground level dust
 - Mirror Degradation
 - Usable time
 - Extinction
 - PWV

- Public documents and information
 - <u>http://www.tmt.org/observatory/site-information/</u> <u>alternate-site-studies</u>

Prepared by TMT DEOPS

SSERVATORIO DEL ROQUE

ALTERNATE SITES

Atmospheric Turbulence and Laser Guide Stars

Prepared by TMT DEOPS

11

ORM Turbulence Data

- Site testing has been going on for decades at ORM
 - Lots of different data sets available
 - No long-time MASS/DIMM data set for direct comparison with other TMT sites
- Because we need the 60-m seeing, we need to work with turbulence profiles
 - DIMM data are only used for (successful) consistency checks
- Best available data set: SCIDAR data covering >5 years, almost 200,000 data points
 - Scidar profiles are actually more accurate than MASS profiles for AO performance analyses (because of the higher vertical resolution), but we need to compare to MASS data from other sites → reduce SCIDAR data to MASS resolution
 - Comparison with other site testing data sets and AO performance from observatories are all consistent
- Using same extrapolation to 60m seeing as for Maunakea 13N
 - This is done on a point-by-point basis, assembling statistics afterward
 - But using statistics gives almost identical results (yes, we verified all of that)
 - All distributions very close to log-normal once sufficient data are available
- N.B: Accuracy of (high quality) turbulence measurements is order 10%

Isoplanatic Angle and Coherence Time

- Isoplanatic angle: SCIDAR provides reliable estimate
 - GL does not matter at all
 - We use MASS-resolution profiles from SCIDARs for comparison with other sites
- There is no question that the coherence time is large at ORM
 - This has been shown over and over again
 - 200 mbar wind speed (see backup slide)
 - Weak high-elevation turbulence
 - Consistent with existing measurements
- No time series of τ₀ measurements simultaneous with SCIDAR profiles available

	V_{200}	(m s ⁻¹)
Site	Mean	Std. dev.
ORM	22.13	11.67
La Silla	33.35	12.94
Mauna Kea	24.33	12.30
Paranal	30.05	13.01
San Pedro	26.55	15.39

Table 9: Results of V_{200} from NCEP/NCAR reanalysis data (1980–2002) at different astronomical sites (García-Lorenzo et al., 2005).

- Using estimate of average τ_0 for all profiles for AO performance simulations
- Some uncertainty on exact value, but:
 - Expected to be longer than at the Chilean sites and slightly shorter than at Maunakea
 - Sensitivity and "inverse" analyses show that this has a small effect on NFIRAOS performance
 - 6 ms is a conservative estimate compared to other sites

Laser Guide Star Operation

- Modeling of LGS performance included extinction and scattering effects
 - Rayleigh Scattering, O₃ Chappius Band, Cirrus cloud ice particles, extinction and scattering due to dust (aerosols)
- Cirrus at higher altitude causes more back scattering than dust at lower altitudes for the same level of extinction
- Extinction at ORM (regardless of course) has same statistics as extinction at MK 13N
- Conclusion is that dust at ORM will not significantly affect LGS operation

Dust. Usable Time. Extinction.

Prepared by TMT DEOPS

15

Sources of ground level dust measurements

MK 13N, Tolonchar, SPM, Armazones

- ~2.5 years at each site
- Measurements every 5 to 7 minutes
- Commercial dust sensor at 7m
- ORM
 - 9 years 5 months of measurements
 - Measurements every 2 hours
 - External inlet at 11m on TNG enclosure
 - Commercial dust sensor (different model but same specs as above)

Mirror degradation

- Gemini testing at Pachon
 - Bare Al lost 0.03%/day, protected silver 0.06%/day without any cleaning
 - Both restored to 100% after wet cleaning no surface degradation
- CTA testing (overcoated Al at SPM, Armazones, Teide)
 %/day 0.015 (SPM), ~0.02 (Armazones), ~0.01 (Teide)
- Liverpool telescope (bare Al) experience at ORM
 - 0.1%/day in between CO₂ cleaning, 0.04% on average with CO₂ cleaning on 6 week timescale same rate as other sites
- GTC (bare Al) experience at ORM
 - CO₂ cleaning procedures ensure no additional mirror degradation due to dust
- "The impact on operations of ground level dust at ORM is much less of a concern than anecdotal reports would lead one to believe." - TMT Internal report (W. Skidmore, et al.)

Usable Time

Usable time at ORM is estimated from observatory weather loss statistics

ORM	ATC	WHT	NOT	LT	TNG
Mean	20.7%	26.33%	26.11%	29.94%	30.24%
Std. Dev.	19.8%	5.73%	16.44%	18.74%	20.70%
Max.	69% (11/1999)	36% (2001)	53.4% (02/2008)	74.35% (01/2006)	90.8% (02/2005)
Min.	0% (various)	15% (2000)	0.9% (08/2007)	1.79% (06/2006)	1.5% (07/2003)
Sampling period	04/1999-11/2003	1990-2007	10/2006-11/2008	01/2006-10/2008	01/2000-12/2005
Sampling duration	56 months	18 years	26 months	34 months	72 months
RH limit	observer dependent	90%	90%	80%	85%
Wind speed limit	observer dependent	80 km/h	72 km/h	60 km/h	54 km/h

Table 13: Compilation of weather downtime at ORM (García-Gil et al., 2010).

- Shutdown conditions are different from observatory to observatory (incl. TMT)
- Usable time for TMT at ORM will likely be similar to the large telescopes there, i.e., in the 70-74% range (using 72% in SMF)
- Corroborated by "manual" analysis of 5yr 1month of CMT (ATC) observing logs which agree to <2% with value in table above (19.1% vs. 20.7%)

Usable Time

\prec	Clear Fraction	Additional time lost due to weather	Usable Time Best Estimate
ORM			72%
SPM	82%	2%	80%
Armazones	89%	3%	86%
MK 13N	76%	4%	72%
Tolonchar	82%	3%	79%

- "Clear fraction" from the Erasmus satellite studies
- Satellite data cover longer periods than on-site measurements at the sites
- Satellite measurements extensively validated using on-site all-sky camera (ASCA) and MASS transparency, weather station)
- Additional time lost comes from simultaneous ASCA and weather station measurements
- Use of satellite data means that we have equivalent data for all sites
- Relative precision for comparing sites in 2008 report is 5% or better

Wavelength (Angstroms)

Precipitable Water Vapor

Site	ORM	SPM	Paranal (Mackenna)	Maunakea	Honar
Altitude	2250 m	2830 m	2640 m	4050 m	5400 m
<2mm	20%	26%	44% (50%)	54%	76%
5%	1.02 mm	1.06 mm	0.81 mm	0.59 mm	0.16 mm
10%	1.42 mm	1.29 mm	0.99 mm	0.78 mm	0.23 mm
20%	2.00 mm	1.74 mm	1.32 mm	1.03 mm	0.34 mm
25%	2.20 mm	1.96 mm	1.46 mm	1.15 mm	0.40 mm
50%	4.24 mm	3.12 mm	2.26 mm	1.91 mm	0.80 mm
75%	7.03 mm	6.12 mm	4.04 mm	3.54 mm	1.74 mm
95%	12.2 mm	15.15 mm	9.58 mm	8.15 mm	5.12 mm

ORM PWV derived from Radio Sonde measurements. Published GPS measurements believed to be under-estimate.

<2mm value for Mackenna estimated as evidence suggests PWV scale height is >1.8km at ground level but doesn't provide quantitative value.

Climate Change

Dr. Eddy Graham

- Hadley Cells are moving and expanding
- No evidence that changes will affect the potential TMT sites
- Some other existing/potential sites may be affected
 - Equatorial regions becoming poorer high/lower latitudes improving

Available observing modes and ability to support science

	TMT potential s i Altitude (m)	ites		МКО (4050)	ORM (2250)	SPM (2790)	Chile #1 (5400)	Chile #2 (3110)
	% of usable time for	science		72	72	80	79	86
Science cases	Visible spectroscopy/ imaging		WFOS					
	UV/Visible HR spectroscopy		WFOS					
	Near-IR AO	IRIS/NFIRAOS, PFI						
	L/M/N band observations	МІСНІ						
	(not TMT core-science) Q-band	>	MICHI					
	Main charactoristic	c.	Pros	(Benchmark)	AO perf.	% clear time	UV/Mid-IR	% clear time
		5	Cons	(Benchinark)	Mid-IR	Mid-IR	Weather	N/A
			Visible	1.0	0.9	0.9	1.1	1.2
lerit ion			Near-IR	1.0	0.8	0.8	1.1	1.0
te V unct			Mid-IR	1.0	0.2	0.3	2.6	0.8
Sit Fu	[40%Vis., 50% Near-	IR, 10% Mid	-IR] Total	1.0	0.8	0.8	1.2	1.0

TMTASSESSMENT against science cases Thirty Meter Telescope All alternate sites are able to support TMT key science

Color coding (sensitivity wrt MKO):

Better Identical Acceptable Compromised Important loss

Target problems (loss of targets, or challenging observing conditions due to site latitude)

New science cases from 2015 DSC

Differential impact of alternative sites wrt MKO

		Observing	Spectral F	Parameters	Spatial Parameters		ers Multiplexing				U.S.A.	MEXICO	SPAIN	CH	ILE	
			SL/NGSAO/	Wavelength	Spectral	Image			# =6	1		мко	SP.Martir vs MKO	R.Muchachos vs MKO	Honar vs MKO	V. Mackenna vs MKO
Science Program		MCAO/ MOAO/MIR AO/ExAO	(µm)	()/())	Resolution (mas)	Strehl (S) / Contrast (C) ratio	Sample Size	# of observation s	Comments	Comments	(4050m)(2800m)(2250m)(5350m)	(3100m)	
Ratio of clea MI	ar nights (wrt KO)											100%	108%	99%	105%	117%
	Notice of	Dwarf galaxy	SL	0.51-0.535	>20,000	(20)	(20)	10000	(20)	WFOS	All sites+/- equal at these	<u></u>				
	Nature or	Dwarf galaxy	MCAO	2 - 2.4	6	10 (20)	> 0.3 (20)	10000 (20)	100-1000 (20)	Ideally WIRC, IRIS	All sites+/- equal at					
	DSC 3 1	Baryonic	SI	(2)	5000 (2)	800 (2)		1280000 (2)	1000 ⁽²⁾	WFOS	sensitivity towards short					
Fundamental	0.000	Galactic	MCAO	2 - 2.4	> 3000 (23)	< 15 (23)		100	120	Ideally IRIS but WIRC	Galactic Center science	******			1	
Physics and	Dark energy	Lyman-alpha	SL	0.35 - 0.62	1000 - 5000	800 (2)		12800 -	80 - 1000 (2)	WFOS, same	Low altitude sites loose					
Cosmology	DSC 3.2	Supernovae	MCAO	1.5 - 1.7 (21)	4000 (21)	(47)		250 (21)	250 (21)	250 SNIa at 1 < z <	All sites+/- equal at these					
DSC 3	Physics of	Gamma-ray	SL	0.30 - 0.90	7500 (17)	700 (17)		600	600	WFUS	Low altitude sites loose					
	objects	Supernovae	MCAU CL (MCAO (18)	0.97 - 1.8 (10)	1000-5000			200 500 (18)	40 250 (18)	WEOS/IRIS	All sites+/- equal at these					
		Tidal flares	SI/MCAU	0.30 - 0.90	7500 (17)	700 (17)		200 - 500 * 7	2000	WFOS	Low altitude sites loose					
	Variation of	fundamental	SL	0.49-0.59 (3)	50000 (3)	700 (3)		50 (3)	50 ⁽³⁾	HROS	All sites+/- equal at					
	NEW DSC	Dark Matter	MIRAO	MIR	>300			~4	?	MICHI IFU or Imager	All low altitude sites have					
Early	First Galaxies	Primordial	MCAO/MOAO	1.6 - 6.0	3000 (8)	25 (10)		25 - 250	25 (10)	IRMS/IRMOS/IRIS	Thermal-IR sensitivity					
Universe	DSC 4.3	Characterizin	MCAO/MOAO	1.1 - 1.6	3000 (8)	(10)			. = = (10)	IRIS/IRMOS	All sites+/- equal at these					
DSC 4	Internalac	tic medium	MCAO	0.8 - 2.5 (10)	30000	25 (10)		150 - 1500 (**)	150 (10)	NIDES	All sites+/- equal at these					
	Intergalac		MCAO	0.9 - 1.5	30000					NIKLO	All Sites+/- equal at these					
Galaxy	Multiplexed s	pectroscopy of	SL	0.31 - 1.0	5000 (17)	800 (17)		100 (17)	8 (17)	WFOS	Low altitude sites loose					
Formation	Multiplexed s	pectroscopy of	MCAO/MOAO	1.0 - 2.5	3270	200		100's	10's	IRMS/IRMOS	All sites+/- equal at these					
and	Spatial dissec	tion of forming	MCAO/MOAO	1.0 - 2.5	4800	8	$S = 0.5^{(7)}$	1400 (10)	< 140 ⁽¹⁰⁾	IRIS/IRMOS	All sites+/- equal at these					
Intergalactic	IGM: Core sa	amples during	SL	0.31 - 0.60	5000	800 (17)		15000	100	WFOS w/ HROS follow	Low altitude sites loose					
medium	Epoch of gala:	xy formation in	SL	0.32 - 0.65	500	800 (17)		120000	1000	WFOS W/ IRMOS	Low altitude sites loose					
Extragalactic	SMBHs in ne	arby galactic	MCAO/NGSA	0.9 - 2.5 (8)	4000-8000	10 (7)	S = 0 5 ⁽⁷⁾	240 (7)	240 (7)	IRIS sample size is	M31 / M33 are not visible					
SuperMassive	SMBHs be	evond local	MCAO/NGSA	0.8 - 2.5 ⁽⁷⁾	3000 (8)	8 - 10 ⁽⁷⁾	$S = 0.5^{(7)}$	90 (22)	180 (22)	IRIS	from Southern	*******				
Black Holes	SMBHs at ver	y high redshift	MOAO/MCAO	0.8 - 2.5 (11)	4800 (11)	50 (11)	$S = 0.5^{(11)}$	1200 (11)	35 (11)	IRMOS/IRIS	All sites+/- equal at these					
	Probing olde	st stars in the	SL	0.33 - 0.9 (3)	40000	700 (3)		100	100	HROS	Note: (1) UV and hear-IR					
Exploration of	Looking dee	eper: isotope	SL	0.45 - 0.68	90000	700 (3)		-		HROS	low altitude cites (2)					
nearby	Local Group	galaxies and	MCAO	0.33 - 0.9 (3)	50000	500 (3)		-		NIRES - molecular	Southern sites mean					
galaxies	Stellar	Diffusion	SI	0.55 - 0.69	40000					HROS - abundances	loosing M31 and other					
DSC 7	astrophysics	Mass loss	SL	0.4 - 0.7						WFOS - brightest	N H galaxies but getting					
	Reconstru	ucting star	MCAO	1.0 - 2.5	4000	10 - 30 (20)	$S = 0.6^{(7)}$	2500 / obs (20)	50 / galaxy	IRIS/WIRC	access to Magellanic					
		-														
Formation of	Physics of	Initial mass	MCAO	1.0 - 5.0 (8)	4000	15	$S = 0.5^{(/)}$	(15)		IRIS IFU w/	M31 / M33 are not visible				+++++++++++++++++++++++++++++++++++++++	
stars and	Protoplanetar	Structure and	MIRAO	4 - 5 (15)	20000	80		100 (15)	100 (15)	MIRES/NIRES	All low altitude cites have					*****
planets	v disks	Gans	MIRAO	4 - 12 (15)	100000			400	400	MIRES/NIRES	All low altitude sites have					
DSC 8	DSC 8.3	Pre-biotic	MIRAO	18 - 25 (15)	100000 (15)			100 (15)	100 (15)	MIRES	All low altitude sites have					
	Doppler	Planets	SL	0.48 - 0.62	50000 (3)	700 (3)		100's	100's	HROS	Southern sites mean					
	detection of	Terrestrial	MCAO	0.97 - 1.7 (16)	50000 -	40	$S = 0.3 - 0.6^{(16)}$	400	400	NIRES	loosing Kepler targets but					
	Direct	Self-luminous	EXAO	1.63 (14)	5 ⁽¹⁴⁾	30 (14)	$S = 0.9^{(14)}$	100's (14)	100's (14)	PFI	All sites+/- equal at these					
Exoplanets	charactorizati	**NEW	EXAO	1.63 mic	5	50 (***)	S = 0.9 (**)	1900 (**)	1900 (***	High-contrast /	All low altitude sites have					
DSC 9	(Exo-)	lovians	ExAO	11-18 (14)	50 - 100 (14)	50 (14)	S - 0 9 (14)	1	1	PFI/IRIS	All sites+/- equal at these					
	Planetary	Jovians	SL	0.5 - 0.9	50000	700 (3)	.1 - 0.2			HROS	Southern sites mean					
	atmospheres	Oxygen on	SL	0.76 - 0.77	40000	700 (3)		< 2500	< 2500	HROS	loosing Kepler targets but					
		**NEW	ExAO	5-10 mic						High-contrast /	All low altitude sites have					
	Outor Solar	Kuines D-It	MCAQUNICCA	1 25	1000	- (19)	(10)	(10)	(10)	IDIC (MIDC						
Our Solar	Suctor	Composition	MCAO/NGSA	1 - 2.5	10000 (16)	27 (16)	S = 0.3 ⁽¹⁹⁾	1092 (19)	1092 (19)	NIDEC	Thormal IP concitivity					
System	Surface nhv	sics of Jovian	MCAO/NGSA	0.9 2 5 (19)	2000	7	C = 0 7 ⁽¹⁹⁾	25 (19)	25 (19)	Program includes	All sites+/- equal at these					
DSC 10	Atmospher	ic physics of	MIRAO	10	100000 (15)	80				MIRES	All sites+/- equal at					

Assessment of Alternate Sites and the Decision Process

- Site evaluation was a multi-dimension process:
 - Astronomical properties of the sites Ability to support TMT science
 - Legal status for TIO to operate in the host country
 - Processes and timescales for obtaining necessary permits, schedule to start construction
 - Cost to construct and operate
 - An evaluation of the risks to schedule and cost.
- Oct. 31st 2016, TIO Board selected ORM as the alternate site for TMT. Considering:
 - The scientific importance for TMT to be uniquely located in the Northern Hemisphere, securing full sky coverage in combination with the ELT projects located in the Southern Hemisphere.
 - The very good quality of the ORM site, which can support TMT core science programs
 - In particular the turbulence properties and capabilities for AO performance
 - The programmatic advantages with the ORM site including:
 - Shorter timeline to initiate construction
 - Shorter timeline to 'first-light'
 - Lower costs of construction and operations
 - Lower project risks based on existence of support infrastructure
- ORM is the best site among all alternate sites considered, to secure a competitive path to first-light within the TMT budget envelope
- Lower-altitude sites like ORM suffer from lower sensitivity at longer mid-IR wavelengths, hence lower efficiency
 - Operations schedule (technical and scientific) will be flexible to optimize best conditions for demanding science programs
 - Revisiting the priorities for TMT next generation instruments

Adjusted operations

ORM operations model similar to MKO

- Maintenance crew traveling daily to summit
- Science operations done remotely from science HQ (Tenerife) and TIO science nodes
- To optimize science efficiency, flexible scheduling of science and engineering activities is needed at any site
 - Extra emphasis is needed at ORM to utilize the best conditions for the science programs that need them
 - SCMS to include PWV monitoring (collaboration with IAC)
 - Requires additional software development (wrt current plan) to optimize real-time prioritization of program scheduling/execution

Instrument priorities to be revisited

Any questions?