Motivation:

- Define requirement for AM2 order of correction.
- Optimize correction over wide FoV(GLAO)
- AM2 at -280m for TMT
 - Slightly worse correction compared to 0 m conjugation.
- Science FoV: 8’x3’ (WFOS: 8.3’x3’)
- Use 4 bright NGS WFS on square grid
- Turbulence
 - Height:
 - $ht=[0\ 500\ 1000\ 2000\ 4000\ 8000\ 16000]m$
 - MK13N 50 percentile: $r_0=0.186m$
 - Layer weight: $[0.4557\ 0.1295\ 0.0442\ 0.0506\ 0.1167\ 0.0926\ 0.1107]$
 - ORM 50 percentile: $r_0=0.178m$
 - Layer weight: $[0.2524\ 0.1925\ 0.1192\ 0.0803\ 0.1160\ 0.1479\ 0.0917]$
 - MK13N 75 percentile: $r_0=0.135m$
 - Layer weight: $[0.3952\ 0.1665\ 0.0703\ 0.0773\ 0.0995\ 0.1069\ 0.0843]$
FoV Averaged Anisoplanatic WFE for a Single Layer (r0=0.3m)

Residual WFE (r0=0.3m)

Layer Height (m)

AM2 at ~280m
AM2 at ground
AM2 at 200m
AM2 correction with Different FoV
Order 30x30, AM2@-280m
With larger FoV:
- Correction degrades
- Impact of AM2 conjugation increases

- \textit{fit2x2}: Assume perfect knowledge of turbulence. Fit to DM using 2x2 directions (corner)
- \textit{wfs2x2}: Actual performance with 2x2 guide star asterism.
Optimize Asterism Size for WFOS (8’x3’)
Order 30x30

Field Average
+ 1 sigma

Field Average
+ 2 sigma

Field Average
+ 3 sigma

Optimal is 6’x3’
For convenient pickup: 6’x4’
WFE Across FoV
6’x4’ Asterism selected

- Even correction within
AM2 Correction Order
Order 30x30 selected

- Negligible improvement at order > 30
Field averaged PSF @600 nm

$\lambda=600\ \text{nm}$
PSF 1-d cut @600 nm
PSF 1-d cut @1000 nm

\[
\lambda = 1000 \text{ nm}
\]

Cross section (arcsecond)

PSF (strehl)
Ensquared Energy

Solid: Closed loop
Dashed: Open loop
Enslited Energy

![Graph showing enslaved energy against width (arcsecond) for different wavelengths (400 nm, 600 nm, 800 nm, 1000 nm).]
PSSN
GLAO over Seeing Limited

![Graph showing PSSN vs Wavelength (μm) for different line types: mk50p, mk75p, orm50p, orm75p.]
FWHM
6’x4’ WFS, Order 30x30

Error bar shows variation within FoV
Different Turbulence Profiles
MK vs ORM

![Graph showing different turbulence profiles MK vs ORM](image)
Current data shows ORM having less ground layer turbulence.
- 30” Imaging FoV. 60” Chop Field [2011 by M. Chun]
- WFE: <750nm or 350 nm (goal)
- Uses Single DM
- WFE is dominated by anisoplanatism
 - 350 nm fundamental error over 30”x30” FoV.
 - 115 nm DM fitting error with order 30x30 correction
 - 410 nm over 60”x60” FoV.
 - AM2 conjugation makes negligible difference
- 5’ FoV.
- AM2 as “Woofer”
 - Reduces RMS WFE from 1400 nm to 800 nm.
 - MEMS DM stroke req. reduced by 45%.
- AM2 conjugation makes almost negligible difference
Conclusion

- Wide FoV instruments benefit from low order (mode) AM2 (~30x30)
 - Limited by anisoplanatism
 - GLAO: 10% (400nm) to 30% (1000nm) reduction in FWHM
 - MOAO
- Sufficient for MIRAO
- Small FoV instruments would benefit from higher order AM2
 - Woofer for NFIRAOS+
 - LTAO (HROS)
Acknowledgments

The TMT Project gratefully acknowledges the support of the TMT collaborating institutions. They are the Association of Canadian Universities for Research in Astronomy (ACURA), the California Institute of Technology, the University of California, the National Astronomical Observatory of Japan, the National Astronomical Observatories of China and their consortium partners, and the Department of Science and Technology of India and their supported institutes. This work was supported as well by the Gordon and Betty Moore Foundation, the Canada Foundation for Innovation, the Ontario Ministry of Research and Innovation, the National Research Council of Canada, the Natural Sciences and Engineering Research Council of Canada, the British Columbia Knowledge Development Fund, the Association of Universities for Research in Astronomy (AURA) and the U.S. National Science Foundation.
Different Correction Order (Field Average WFE + 1 Sigma)

Order 20x20: 818 nm
Order 30x30: 813 nm
Order 40x40: 813 nm
Order 60x60: 811 nm