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1. EXECUTIVE SUMMARY 
This document describes the science-driven requirements for the Thirty-Meter Telescope (TMT) 
project. TMT will be the first of the next-generation giant optical/infrared ground-based telescopes 
and will be a flagship facility for addressing the most compelling areas in astrophysics: the nature of 
Dark Matter and Dark Energy, the assembly of galaxies, the growth of structure in the Universe, the 
physical processes involved in star and planet formation and the characterization of extra-solar 
planets.  In the current era, 8-10m telescopes have produced critical scientific discoveries and often 
have provided the spectra that are required for physical interpretation of the imaging discoveries of 
the Hubble Space Telescope, Chandra X-ray Observatory, Compton Gamma-ray Observatory, 
Spitzer Space Telescope, and other forefront facilities.  In addition to being a very powerful 
standalone facility, TMT will similarly complement future observatories both on the ground and in 
space.  A 30m-class optical/IR observatory was identified as the highest-priority ground-based facility 
in the 2001 National Academy of Sciences report “Astronomy and Astrophysics in the New 
Millennium” (RD11) (also known as the 2001 “Decadal Survey”). 
Responding to the Decadal Survey report, TMT is a 30-meter aperture facility with broad capabilities 
operating over the wavelength range 0.3-30 µm.  TMT provides 9 times the collecting area of the 
current largest optical/IR telescopes and, using adaptive optics, will provide spatial resolution 12.5 
times sharper than the Hubble Space Telescope and 3 times sharper than the largest current-
generation O/IR telescopes. For many applications, diffraction-limited observations provide gains in 
sensitivity that scale like D4 (where D is the primary-mirror diameter); thus, TMT will provide a 
sensitivity gain of a factor more than 100 as compared to current 8m telescopes. 
By design, TMT will provide new science opportunities in essentially every field of astrophysics.  
Furthermore, as has been the case historically when observational sensitivity improves by a large 
factor, the scientific impact of TMT will go far beyond what we envision today; TMT will enable 
discoveries that we cannot anticipate.  Nevertheless, there are some key science goals that have 
been used to define the technical capabilities of TMT. 
These key areas include: 

x Spectroscopic exploration of the “dark ages” when the first sources of light and the first heavy 
elements in the universe formed and when the universe, which had recombined at z ~1000, 
becomes re-ionized by these sources of light. The nature of “first-light” objects and their 
effects on the young Universe are among the outstanding open questions in astrophysics.  
Here TMT and JWST will work hand-in-hand, with JWST providing targets for detailed study 
with TMT’s spectrometers.  

x Exploration of galaxies and large-scale structure in the young universe, including the era in 
which most of the stars and heavy elements were formed and the galaxies in today’s 
universe were assembled.  TMT will allow detailed spectroscopic analysis of galaxies during 
the epoch of galaxy assembly.  Issues ranging from the early production and dispersal of the 
chemical elements, to the distribution of baryons within dark matter halos and the processes 
of hierarchical merging will be directly addressable.  The early epoch of the formation and 
development of the large-scale structures that dominate the universe today will also be 
observable with the TMT. Studies of the matter power spectrum on small spatial scales, using 
direct observations of distant galaxies and the intergalactic medium, provide information on 
the physics of the early universe and the nature of dark matter that are inaccessible using any 
other techniques.  

x Investigations of massive black holes throughout cosmic time. The recently-discovered tight 
correlation between central black hole mass and stellar bulge velocity dispersion strongly 
implies that black hole formation and growth is closely tied to the processes that form 
galaxies.  This result also suggests that super massive black holes are at the centers of most 
or all large galaxies. The TMT combination of high spatial resolution and moderate-to-high 
spectral resolution will provide unprecedented capability for extending the detection and 
investigation of central black holes to cosmological redshifts. In addition to investigations 
designed to understand the black hole-galaxy growth issue, nearby supermassive black 
holes can be analyzed with very high physical resolution. This will allow us to measure 
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general relativistic effects at the center of the Galaxy and to spatially resolve the accretion 
disks for active black holes in the centers of galaxies to the distance of the Virgo cluster. 

x Exploration of planet-formation processes and the characterization of extra-solar planets. 
Two of the most exciting challenges to astrophysics in the next decades are to understand 
the physical processes that lead to star and planet formation and to characterize the 
properties of extra-solar planets. TMT will play an important role in many aspects of this 
endeavor.  Spectroscopic discovery observations that push into the terrestrial-planet regime, 
the kinematics of proto-planetary disks, spectroscopic detection and analysis of extra-solar 
planet atmospheres, and the direct detection of extra-solar planets in reflected and emitted 
light are all goals that are driving the TMT design requirements. 

These broad science goals have motivated a set of science-driven observatory capabilities and 
requirements that are described in this document, representing the consensus view of the Science 
Advisory Committee and the Project Scientist, after consultation with many expert engineers and 
scientists within the broad TMT community. The SAC has recommended an “early light” instrument 
suite that is intended to be commissioned with the telescope or very soon after.  A larger set of 
instruments and capabilities are intended to be delivered within the first decade of TMT operation are 
also recommended; these “first decade” capabilities are subject to revision as astrophysics and 
technology advance. Essentially all science-based requirements in this document have undergone 
several iterations between astronomers and technical/engineering experts to ensure that they are 
both ambitious and technically feasible.  Requirements are subject to change as more is learned 
about the cost impact and technical feasibility of meeting them. An ongoing dialog between the SAC 
and the TMT Project is maintained to ensure that science and engineering realities are appropriately 
balanced.  
Because of the long lifetime of TMT and the often-rapid advancement of astrophysics into new areas, 
this document emphasizes capabilities whose broad applications to current astrophysical problems 
are clear at this time, and where the gains in sensitivity and angular resolution provide for a large 
“discovery space” for phenomena that are currently unknown.  
The level of scientific detail presented here is deliberately limited so that the technical requirements 
are provided in a compact and easily readable form. More detailed discussion of specific science 
cases that have been used to drive the science-based requirements can be found in the TMT 
Detailed Science Case (RD6).  
The proposed TMT capabilities are divided into “Early Light” and ”First Decade”. The Early Light suite 
of capabilities includes a facility adaptive optics (AO) system that will provide diffraction-limited 
images over the wavelength range 0.8-2.5 µm from the very start of TMT operations.  The initial AO 
system (NFIRAOS) will deliver wavefront errors under 190 nm rms, over a 30-arcsec field of view; 
within 5 years we expect that delivered wavefront errors will drop to no more than 133 nm rms over 
30 arcsec and 120 nm rms on axis. Additional adaptive optics systems optimized for the mid-IR 
(MIRAO) and for near-IR correction of numerous small patches of sky over a large (5 armin) field of 
view (MOAO) are also expected within the first decade of operations. 
 
Early Light Capabilities: 

x Near-IR Adaptive Optics System (NFIRAOS): a dual-conjugate (MCAO) system provides 
diffraction-limited images over the wavelength range 0.8-2.5µm over a 30 arcsec field, and 
partially-corrected images over a >2 arcmin field.  

x InfraRed Imaging Spectrometer (IRIS); Diffraction-limited, R~4000 spectral resolution, 0.8µm 
to 2.5µm spectroscopy (utilizing an integral field unit (IFU)) over a small field, and an imager 
covering a field of view of >15 arcsec. IRIS is behind the NFIRAOS AO system. 

x Wide-field Optical Spectrometer (WFOS): Seeing-limited multiplexed 1000 < R < 6000 
spectral resolution, 0.31-1µm spectroscopy over a wide (~40 arcmin2) field. 

x Infrared Multislit Spectrometer (IRMS): Near-IR (0.95-2.45µm) imaging spectrometer 
(R~3000-5000) that will use a multi-slit mechanism over a contiguous field of view of ~2’ with 
>40 slits. IRMS is used behind the NFIRAOS AO system, taking advantage of the substantial 
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AO correction over the full field; it is expected to provide some of the IRMOS capabilities for 
early light. 

 
First Decade Capabilities: 

x InfraRed Multi-Object Spectrometer (IRMOS): near-diffraction limited, R~2000 – 10000 IFU-
based spectrometer operating over a wavelength range 0.8-2.5µm. Will use multiple IFUs 
and access a 5 arcmin diameter field. It is expected to benefit from developments in multi-
object adaptive optics (MOAO).  

x Mid-IR High-resolution Echelle Spectrometer (MIRES): Diffraction-limited, 5000 < R < 
100,000 spectral resolution, 8-28µm spectroscopy.  MIRES will also have a mid-IR 
imaging/slit viewing capability.  

x Planet Formation Instrument (PFI): Very high-contrast imaging along with low-resolution 
spectroscopy for direct planet detection, on scales near the diffraction limit in the 1 – 2.5µm 
region.  For bright stars (I<8) will be able to detect planets108 times fainter than the parent 
star, with a goal of 109, at angular distances greater than 50mas from the star. 

x Near-IR High-resolution Echelle Spectrometer (NIRES): Diffraction-limited, high-spectral-
resolution (20000 < R < 100,000) echelle spectroscopy in the 1-2.5µm and 3-5µm range. 
NIRES will operate behind an adaptive optics system appropriate to the wavelength range.   

x High-resolution Optical Spectrometer (HROS): spectroscopy with R < 50,000 for wavelengths 
ranging from the atmospheric cutoff at 0.31µm to 1µm (or longer if detectors exist that will 
allow it) with wide spectral coverage in a single exposure.  This capability will likely be 
achieved via a large, echelle spectrometer. 

x Wide-field Infrared Camera (WIRC): Diffraction-limited imaging in the 0.8-5µm wavelength 
range over a > 30 arcsec contiguous field. 
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2. INTRODUCTION 

 BACKGROUND AND MOTIVATION 
A 30m-class “Giant Segmented Mirror Telescope” was the top priority recommendation of the 2001 
Astronomy and Astrophysics Decadal Survey of the U.S. National Research Council. The Survey 
also recommended that this telescope be a public-private partnership.  Such a telescope, operating 
from the UV to the mid-IR, is seen as an essential tool for science ranging from understanding star 
and planet formation to unraveling the history of galaxies and the development of structure in the 
universe. Because of the extremely high angular resolution achievable at the diffraction limit of a 30m 
aperture, and because of the ten-fold increase in collecting area over existing optical/IR telescopes, 
such a facility will mark gains in sensitivity over existing facilities ranging from a factor of 10 to a 
factor of 100, depending on the application. The “GSMT” is also envisioned to play an essential 
complementary role to the James Webb Space Telescope (JWST), an infrared optimized 6.5m 
aperture space telescope to be launched early in the next decade, and the Atacama Large Millimeter 
Array (ALMA), an array of 64 antennae that will revolutionize astrophysics at sub-mm and mm 
wavelengths. Many of the key scientific questions to be addressed by the next generation giant 
ground-based telescope are in common with those of JWST and ALMA; the complementary power 
of state-of-the art telescopes on the ground is largely based on the ability to obtain spectra of 
extremely faint sources in the optical and near-IR, and to achieve unprecedented angular resolution 
when operating at the diffraction limit at wavelengths between 0.6 and 30 ȝm. 
The Thirty Meter Telescope (TMT) project is intended as a public-private partnership that fulfills all of 
the goals for the GSMT articulated by the decadal review committee. It has as its goal the design and 
construction of a 30m segmented-mirror telescope, the adaptive optics (AO) systems required to 
achieve diffraction-limited performance, and the instruments required to use this facility to address 
the most compelling questions in astrophysics in the coming decades. 
 

 BASIS FOR SCIENCE REQUIREMENTS 
This document describes the science-driven capabilities required of the TMT as agreed to by the 
TMT Science Advisory Committee (SAC) representing the three partners in the project. To 
accommodate the science-based goals, the SRD describes the requirements on the TMT site 
characteristics, the telescope performance, the adaptive optics (AO) performance and the instrument 
suite and performance. Specific science drivers and the flow down from science case to 
requirements and goals are described in depth in TMT Report 53, the “Detailed Science Case”, 
which is available together with other reports at http://www.tmt.org/documents. In identifying the 
highest priority capabilities of TMT, the ability to carry out the programs described in the science case 
document has been carefully considered; however, it has always been the case that significant 
improvements in capability in astronomical facilities have led to unanticipated major discoveries. For 
example, many of the most important discoveries of the Keck 10m telescopes (e.g. extra-solar 
planets, the accelerating Universe, the nature of gamma-ray bursts sources) were not part of the 
original science case on which the observatory design was based. Thus, the TMT science-based 
requirements have also been cognizant of the broad capabilities anticipated to open a large 
“discovery space”. 
 
A final major consideration in the SAC deliberations has been complementarity to planned and 
anticipated forefront astronomical facilities in space and at other wavelengths, most importantly 
JWST and ALMA. At present, there is a powerful scientific synergy combining discovery images 
taken with the 2.4m Hubble Space Telescope and spectra from the largest ground-based telescopes. 
However, the current generation of 8 and 10m telescope will be unable to provide spectra of faint 
sources discovered with a 6m O/IR space telescope. We will require the capabilities of TMT to take 
full advantage of the discoveries made by JWST (and other future missions). 
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 PRIORITIES 
The capabilities and AO/instrument concepts described in the SRD have been prioritized into two 
groups, ordered by SAC consensus after considering scientific breadth, perceived “discovery space”, 
technical risk, and finite budgets. The SAC recommends that all of the capabilities described here 
should be implemented in the first decade of TMT operation. The subset of early-light  instruments 
reflects a strategic desire to deliver within a few years of first-light a powerful suite of complementary 
capabilities with broad scientific application that can take advantage of seeing- and diffraction-limited 
science opportunities. These initial capabilities  will allow many of the programs described in the TMT 
Detailed Science Case to be addressed in the first few years of TMT operations. It is anticipated 
(based on current assessments of science and technical risk) that initially, 50% or more of the time 
the telescope may be used for seeing-limited (i.e., UV/optical) observations. As AO technology 
matures, we also anticipate that TMT will operate a larger fraction of the time in the diffraction-limited 
regime where sensitivity gains over smaller telescopes can grow as fast as D4 and there will be 
unparalleled gains in angular resolution. The capabilities are specified in detail in this document, and 
briefly summarized below (see also Table 2-1). 
In order to enable these diffraction-limited capabilities, an adaptive optics system is needed for TMT. 
We will require an initial AO system that delivers wavefront errors below 190 nm rms over a 30 
arcsec field of view, in median seeing, with at least 50% sky coverage at the galactic pole. Within a 
few years an AO system that delivers rms wavefront errors below 120 nm on axis and 133 nm over 
30 arcsec field of view, and provides excellent correction over 2 arcmin field of view should be 
possible. 

2.3.1 Early-Light Capabilities 
x Near-IR Adaptive Optics System (NFIRAOS): a dual-conjugate (MCAO) system provides 

diffraction-limited images over the wavelength range 0.8-2.5µm over a 30 arcsec field, and 
partially-corrected images over a >2 arcmin field.  

x InfraRed Imaging Spectrometer (IRIS); Diffraction-limited, R~4000 spectral resolution, 0.8µm 
to 2.5µm spectroscopy (utilizing an integral field unit (IFU)) over a small field, and an imager 
covering a field of view of >15 arcsec. IRIS is behind the NFIRAOS AO system. 

x Wide-field Optical Spectrometer (WFOS): Seeing-limited multiplexed 1000 < R < 5000 
spectral resolution, 0.31-1µm spectroscopy over a wide (~40 arcmin2) field. 

x Infrared Multislit Spectrometer (IRMS): Near-IR (0.95-2.45µm) imaging spectrometer 
(R~3000-5000) that will use a multi-slit mechanism over a contiguous field of view of ~2’ with 
>40 slits. IRMS is used behind the NFIRAOS AO system, taking advantage of the substantial 
AO correction over the full field; it is expected to provide some of the IRMOS capabilities for 
early light. 

2.3.2 First Decade Capabilities 
x InfraRed Multi-Object Spectrometer (IRMOS): near-diffraction limited, R~2000 – 10000 IFU-

based spectrometer operating over a wavelength range 0.8-2.5µm. Will use multiple IFUs 
and access a 5 arcmin diameter field. It is expected to benefit from developments in multi-
object adaptive optics (MOAO).  

x Mid-IR High-resolution Echelle Spectrometer (MIRES): Diffraction-limited, 5000 < R < 
100,000 spectral resolution, 8-28µm spectroscopy. MIRES will also have a mid-IR 
imaging/slit viewing capability.  

x Planet Formation Instrument (PFI): Very high-contrast imaging along with low-resolution 
spectroscopy for direct planet detection, on scales near the diffraction limit in the 1 – 2.5µm 
region. For bright stars (I<8) will be able to detect planets108 times fainter than the parent 
star, with a goal of 109, at angular distances greater than 50mas from the star. 

x Near-IR High-resolution Echelle Spectrometer (NIRES): Diffraction-limited, high-spectral-
resolution (20000 < R < 100,000) echelle spectroscopy in the 1-2.5µm and 3-5µm range. 
NIRES will operate behind an adaptive optics system appropriate to the wavelength range.   
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x High-resolution Optical Spectrometer (HROS): spectroscopy with R < 50,000 for wavelengths 
ranging from the atmospheric cutoff at 0.31µm to 1µm (or longer if detectors exist that will 
allow it) with wide spectral coverage in a single exposure. This capability will likely be 
achieved via a large, echelle spectrometer. 

x Wide-field Infrared Camera (WIRC): Diffraction-limited imaging in the 0.8-5µm wavelength 
range over a >30 arcsec contiguous field. 

 GENERAL COMMENTS REGARDING LARGE-TELESCOPE CAPABILITIES 
Much of the power of a 30-m ground-based telescope lies in its ability to perform spectroscopy of 
unprecedented sensitivity over a very wide wavelength range, and to take advantage of the ability to 
continue developing instrumental capabilities as the technological and scientific landscape changes 
with time. 
A 30-m class ground-based telescope operating from the UV to the mid-IR will contribute in unique 
ways to astrophysical discovery, and the nature of these contributions is largely a function of 
wavelength. In the UV and optical part of the electromagnetic spectrum (0.31-1ȝm), achieving 
diffraction limited images with a 30-m aperture is challenging; however, because the terrestrial 
background is very low (comparable to that in space), TMT will achieve spectral sensitivity at flux 
levels of ten nano-Janskys (nJy), even with image quality that is limited by atmospheric turbulence 
(“seeing”) at the level of a few tenths of an arc second.  Generally, the gain in sensitivity for 
UV/optical observations will be a factor of 10-20 compared to the present-day state of the art, and will 
allow for qualitatively new science and discoveries, particularly in the distant universe.  
At wavelengths 1-2.5ȝm, the atmosphere is relatively transparent, but a forest of extremely bright OH 
emission lines produced in the upper atmosphere dominates the terrestrial background.  For broad-
band observations (e.g., imaging), the night sky is approximately 600 times brighter per unit solid 
angle at 1-2.5ȝm as compared to 0.4ȝm. 
However, using adaptive optics, the typical image quality for a point source can be improved from 
~0.5 arc seconds in “seeing limited” mode, to ~0.01 arc seconds. From a sensitivity standpoint, for 
unresolved sources in a background-limited regime, this is equivalent to reducing the effective 
background by a factor of ~1600, or increasing the signal-to-noise ratio in a given integration time by 
a factor of 40 (assuming a high Strehl ratio is achieved). Because the sensitivity is enhanced relative 
to a smaller telescope both by the increase in the aperture and the decrease in the relevant 
background, sensitivity scales roughly proportional to D4, where D is the telescope primary diameter. 
Thus, moving from present-day 6.5-10m telescopes to a 30m aperture will increase the sensitivity by 
a factor of 80-400 for some types of observations. 
More specifically, the required integration time to reach a desired signal-to-noise ratio on a faint point 
source varies as 

 
where background/arcsec2 includes sky, telescope, optics, and detector dark current; throughput is 
the fractional throughput from the primary to the detected photons; and S is the Strehl ratio (the 
fraction of light in the diffraction-limited core of the image).  
If we consider the science productivity of the telescope as a key parameter, a relatively simple 
approach to optimization can be used. Since many observations will be limited by the background 
flux, not by the signal flux, the point source sensitivity (proportional to the science productivity) in this 
case can be shown (King 1983, RD4) to be 

 
 
where  PSS = point source sensitivity 
 ENA = equivalent noise area 
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 PSF = point spread function ( ) 
This metric scales as 1/(image size)2 or, with adaptive optics ~ S2. 
 

 SUMMARY TABLE OF CAPABILITIES: EARLY-LIGHT + FIRST DECADE 
Table 2-1 Instrument Capabilities 

FUNCTION/NAME MODE FIELD OF VIEW SPECTRAL 
RESOLUTION 

WAVELENGTH 
RANGE (µM) COMMENTS 

InfraRed Imager and 
Spectrometer 

(IRIS) 
DL <3” IFU 

>15”imaging 
> 3500 

5-100(imaging) 
0.8 – 2.5 

0.6 – 5(goal) 
 
NFIRAOS 

Wide-field Optical 
spectrometer and 

imager 
(WFOS) 

SL 

>40 arcmin2 
>100 arcmin2 

(goal) 
Slit length>500” 

1000-
5000@0.75” slit 
>7500 @0.75” 

(goal) 

0.31-1.0 
0.3-1.5(goal)  

InfraRed Multislit 
Spectrometer (IRMS) n-DL 

2 arcmin field, 
up to 120” 

arcsec total  slit 
length with 46 

deployable slits 

R=4660 @ 0.16 
arcsec slit 0.95-2.45 NFIRAOS 

Multi-IFU imaging 
spectrometer 

(IRMOS) 
n-DL 

3” IFUs over 
>5’ diameter 

field 
2000-10000 0.8-2.5 MOAO 

Mid-IR AO-fed 
echelle spectrometer 

(MIRES) 
DL 3” slit length 

10” imaging 5000-100000 8-18 
4.5-28 (goal) MIRAO 

Planet Formation 
Instrument 

(PFI) 
DL 

1” outer 
working angle, 

0.05” inner 
working angle 

R=100 1-2.5 
1-5 (goal) 

108 
contrast  
109 goal 

Near-IR AO-fed 
echelle spectrometer 

(NIRES) 
DL 2”slit length 

 20000-100000 1-5 NFIRAOS

High-Resolution 
Optical Spectrometer 

(HROS) 
SL 5” slit length 50000 

0.31-1.1 
0.31-

1.3(goal) 
 

“Wide”-field AO 
imager 
(WIRC) 

DL 30” imaging 
field 5-100 0.8-5.0 

0.6-5.0(goal) MCAO 

 
 

 SCOPE 
This document contains science-based requirements in the following areas: 

x General Constraints 
x Telescope and Instrumentation Requirements 
x Site and enclosure requirements 
x Adaptive Optics Requirements 
x Early-light Instrumentation Requirements 
x First-Decade Instrumentation Requirements 
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x Data Handling Requirements 
x Nighttime operations Requirements 

 APPLICABLE DOCUMENTS 
AD1 DELETED 

 REFERENCE DOCUMENTS 
RD1 
 California Extremely Large Telescope: Conceptual Design for a Thirty-Meter Telescope 
 CELT Report Number 34 
 http://authors.library.caltech.edu/46821/ 
 
RD2 
 Enabling a Giant Segmented Mirror Telescope for the Astronomical Community 
 http://www.gsmt.noao.edu/book/ 
 
RD3 
 VLOT Project Book Section A. Table of Contents 
 TMT.SEN.TEC.03.001 
 https://docushare.tmt.org/docushare/dsweb/Get/Document-181 
 
RD4 
 Accuracy of measurement of star images on a pixel array by King, I. R. 
 PASP Vol. 95:163-168, 
Number 564 
 http://iopscience.iop.org/article/10.1086/131139?fromSearchPage=true 
 
RD5 
 Frontier Science Enabled by a Giant Segmented Mirror Telescope, Prepared for the Astronomy 
Division of the NSF by the GSMT Science Working Group 
 
 http://www.gsmt.noao.edu/gsmt_swg/SWG_Report/SWG_Report_7.2.03.pdf 
 
RD6 Detailed Science Case (DSC) 
 TMT.PSC.TEC.07.007 
 https://docushare.tmt.org/docushare/dsweb/Get/Document-32176 
 
RD7 
 A New Software Tool for Computing Earth's Atmospheric Transmission of Near- and Far-Infrared 
Radiation by Steven D. Lord 
 NASA-TM-103957 
 http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930010877.pdf 
 
RD8 
 From Differntial Image Motion to Seeing by Tokovinin, A. 
 PASP Vol. 114:1156-1166, 
Number 800 
 http://iopscience.iop.org/article/10.1086/342683?fromSearchPage=true 
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RD9 
 Guide Star Requirements for NGST: Deep NIR Starcounts and Guide Star Catalogs by Spagna, 
A. 
 STScI-NGST-R-0013B 
 http://adsabs.harvard.edu 
 
RD10 
 The universe at faint magnitudes. I - Models for the galaxy and the predicted star counts by 
Bahcall, J. N., & Soneira, R. M. 
 Astrophysical Journal Supplement Series, vol. 44, p. 73-110 
 http://adsabs.harvard.edu/abs/1980ApJS...44...73B 
 
RD11 
 Astronomy and Astrophysics in the New Millennium, Astronomy and Astrophysics Survey 
Committee, Commission on Physical Sciences, Mathematics and Applications, National Research 
Council 
 http://www.nap.edu/openbook.php?isbn=0309070317 
 
RD12 DELETED 
 
RD13 Keck Observatory Technical Note No. 400 - Atmospheric Refraction at Mauna Kea 
 TMT.SEN.TEC.17.006 
 KECK TN400 
 https://docushare.tmt.org/docushare/dsweb/Get/Document-61336 
 
RD14 A synthetic view on structure and evolution of the Milky Way 

TMT.SEN.JOU.17.002 
A&A 409, 523-540 
https://docushare.tmt.org/docushare/dsweb/Get/Version-61736 
 

RD15 Astrometry with TMT – Cameron Lu 
TMT.AOS.PRE.07.036 
https://docushare.tmt.org/docushare/dsweb/Get/Document-9167 

 
RD16 Keck Observatory Technical Note No. 331 - Point Spread Functions in Astronomy 

TMT.SEN.TEC.17.019 
https://docushare.tmt.org/docushare/dsweb/Get/Document-61802 
 

 ABBREVIATIONS 
See Table below 
Acronym Definition 
ADC Atmospheric Dispersion Corrector 
ALMA Atacama Large Millimeter Array 
AO Adaptive Optics 
AOS AO System 
CCD Charge Coupled Device 
CELT California Extremely Large Telescope 
DM Deformable Mirror 
DSC Detailed Science Case 
EE Enclosed Energy 
FOV Field of View 
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FWHM Full Width at Half Maximum 
GLAO Ground-Layer AO 
GSMT Giant Segmented Mirror Telescope 
HROS High Resolution Optical Spectrograph 
IFU Integral Field Unit 
IR InfraRed 
IRIS Infrared Imaging Spectrometer 
IRMOS Infrared Multi-Object Spectrograph 
IRMS Infrared Multi-Slit Spectrometer 
JWST James Webb Space Telescope 
LGS Laser Guide Star 
LLNL Lawrence Livermore National Laboratory 
LRIS Low Resolution Imaging Spectrograph 
MCAO Multi-Conjugate Adaptive Optics 
MIRAO Mid InfraRed Adaptive Optics 
MIRES Mid-Infrared Echelle Spectrograph 
MK Mauna Kea 
MOAO Multi-Object Adaptive Optics 
MOSFIRE Multi-Object Spectrometer for Infra-Red Exploration 
NASA National Aeronautics and Space Administration 
NFIRAOS Narrow Field Infrared Adaptive Optics System 
NGS Natural Guide Star 
NGST Next Generation Space Telescope 
NIR Near-Infrared 
NIRES Near Infrared Echellette Spectrograph 
NSF National Science Foundation 
OH Oxygen-Hydrogen Radical 
PFI Planet Formation Instrument 
PSF Point Spread Function 
PSS Point Source Sensitivity 
RMS Root Mean Square 
SAC Science Advisory Committee 
SNR Signal to Noise Ratio 
SRD Science Requirements Document 
STScI Space Telescope Science Institute 
TBC To Be Confirmed 
TBD To Be Defined or To Be Determined or To Be Done 
TMT Thirty Meter Telescope 
UV Ultraviolet 
VLOT Very Large Optical Telescope 
WFOS Wide Field Optical Spectrograph 
WFS Wavefront Sensor 
WIRC Wide Field Infrared Camera 
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3. SCIENCE-BASED REQUIREMENTS 

 TELESCOPE 

3.1.1 General Description 
[REQ-0-SRD-0010] Expected science covers a wide range of wavelengths, generally 
needing the highest sensitivities or angular resolution.  

Discussion: Wavelength limitations due to the atmosphere are given in Appendix 1. The 
TMT will be the largest ground-based telescope in the world. It will carry out a variety of 
forefront science over a wide range of wavelengths. The telescope requirements are 
designed to support these expected and potential future uses. 

[REQ-0-SRD-0015] Initially, the telescope is expected to be used roughly 50% of time for 
seeing-limited observations and 50% of the time for diffraction-limited observations (using 
AO). 

Discussion: This is based on current scientific interest and technology limitations. AO 
with laser beacons is likely to be compromised by cirrus clouds, so otherwise useful 
nights may not be available for AO. As AO capabilities come to fruition, this percentage 
may increase. 

3.1.2 Optical 
3.1.2.1 Optical Configuration 

[REQ-0-SRD-0045] Segmented mirror primary, entrance pupil equivalent to 30m diameter. 
[REQ-0-SRD-0050] Aplanatic configuration with 20 arcmin field of view (15 arcmin 
unvignetted). 

Discussion: The secondary provides aplanatic correction (removes coma) to provide a 
20 arcmin field of view. This can be done with either a Ritchey-Chrétien (RC) or an 
Aplanatic-Gregorian (AG) configuration.  

[REQ-0-SRD-0055] Prime focus is not required 

Discussion: We have found no strong science cases in support of a prime focus. 
Because of the simplification to the telescope we are comfortable omitting this focus. 

[REQ-0-SRD-0060] Cassegrain focus is not required. 
 

Discussion: Nasmyth focus provides needed function with greater convenience (and 
acceptable light loss) 

[REQ-0-SRD-0065] Two Nasmyth foci with two large Nasmyth platforms needed with 
expected sizes each of ~350m2 and ability to place multiple instruments per platform 

Discussion: It is desirable to have access to all Nasmyth instruments on any given 
night, thus platforms need to accommodate all planned instruments.  

3.1.2.2 Image and Wavefront Quality 
[REQ-0-SRD-0070] Telescope image quality should not degrade the science capability by 
more than 20% compared to a perfect telescope at the same site. 

Discussion: The telescope image quality specification encompasses many effects, 
including those from optics, collimation, guiding, auto focus, wavefront sensing, wind, 
mirror and dome seeing.  
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Science capability (units of science/hr) for seeing-limited work is defined for background 
limited point sources, where science capability ~ 1/T2 and T is the image size. This 
follows directly from 

 
where T, the image size (PSF), determines how much background flux must be 
included in the S/N estimate. Here D is the telescope diameter, t is the integration time, 
and S/N is the achieved signal to noise ratio. Hence, we integrate over all site 
conditions (for our reference site) in interpreting this requirement on telescope-induced 
image blur. We assume that the 80% enclosed energy image diameter is a suitable 
measure of image size. If we assume the telescope behaves like an equivalent 
atmosphere, this leads to the telescope having an equivalent r0=0.8m. This in turn 
leads to a T80=0.237 arcsec. The ADC and instrument rotators have a separate 
specification and are not included here. The PSF and enclosed energy curves from the 
median atmosphere are shown in Appendix 9 for reference. 

[REQ-0-SRD-0075] We require the telescope to introduce additional wave front errors that 
are smooth and small compared to the site median atmosphere. 

Discussion: Since we plan extensive use of adaptive optics, where diffraction limited 
performance is desired, we also constrain the image and wave front quality in a 
language suitable for AO. AO systems are capable of correcting relatively low order 
aberrations in the wave front.  

[REQ-0-SRD-0080] Exoplanets must be detectable at a contrast ratio of 1e-8 of the parent 
star in H-band 

Discussion: Requirements will vary from application to application, but the most 
stringent application is for Extreme Adaptive Optics, used to detect planets around 
stars. This could be achieved with an AO system with a 128x128 DM 

[REQ-0-SRD-0085] Actual speckle amplitude should be no more than 1e-7. 

Discussion: See the PFI instrument requirements for details 

[REQ-0-SRD-0090] Prior to AO, individual segment wavefront errors should be no more 
than about 20 nm rms. 

Discussion: Individual segment surface smoothness and accuracy is critical to achieve 
[REQ-0-SRD-0085]. 

[REQ-0-SRD-0100] Telescope optical errors must be sufficiently small and smooth that a 
60x60 deformable mirror can reduce the optical errors to 45 nm rms wavefront. 

Discussion: This is needed to allow high Strehl observations  

[REQ-0-SRD-0105] Telescope optical errors must be sufficiently small and smooth that a 
128x128 deformable mirror can reduce the optical errors to 25 nm rms wavefront. 
[REQ-0-SRD-0110] Image blur is allowed to degrade as (secz)3/5  

Discussion: This degradation with zenith angle follows the same rate as the 
atmosphere 

[REQ-0-SRD-0115] Wavefront errors are allowed to degrade as (secz)1/2. 

Discussion: This degradation with zenith angle follows the same rate as the 
atmosphere. 
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3.1.2.3 Atmospheric Dispersion Compensation (ADC) 
[REQ-0-SRD-0120] ADC compensation will be needed and applied either by the telescope, 
AO system, or instrument as agreed.  

Discussion: Dispersion in the index of refraction of the atmosphere causes image blur 
for observations made away from the zenith. Atmospheric dispersion requiring 
compensation is described in Appendix 8. Specific ADC requirements will vary with 
instruments. 

3.1.2.4 Throughput 
[REQ-0-SRD-0125] Mirror reflectivity shall be as good as any broadband coatings available. 

Discussion: From 0.31µm to 1µm the reflectivity should exceed 95% (this is met by the 
LLNL coating for the Keck-LRIS collimator). Beyond 1.5µm the reflectivity should 
exceed 99% (met by silver). Details of existing coatings and the impact on system 
throughput are given in Appendix 3.  

[REQ-0-SRD-0130] Telescope night-time lost to servicing mirrors should be minimized. 

Discussion: The concern is that replacing mirror segments will require night-time for 
realignment of the new segments. Durable, cleanable mirror coatings will reduce the 
frequency that mirrors are removed from the telescope and thus will be useful in 
meeting this requirement. 

[REQ-0-SRD-0135] Blockage of the full aperture by structure should be � 2.5% 

Discussion: Thin members will block light and also diffract an equal amount of light into 
large angles where it is useless, hence the blockage is effectively twice the cross-
sectional area. 

[REQ-0-SRD-0140] To the extent practical, blockages should be simple in shape so they 
can be masked out by cold pupil stops. 

3.1.2.5 Backgrounds and Stray Light 
[REQ-0-SRD-0145] Telescope shall be unbaffled. 

Discussion: Stray light is a potential problem for science observations. This may be 
mitigated by telescope baffles or by instrument baffles. Determining the optimal solution 
will require detailed trade studies. Consideration of both emissivity and wind buffeting 
suggest it is better to resolve this within the instrument.  

[REQ-0-SRD-0150] Thermal background radiation from the telescope and its optics should 
be minimized. Including primary, secondary and tertiary (M1+ M2+ M3), total thermal 
background should be � 5% of a blackbody at the average ambient night-time temperature 
for fresh coatings. 

Discussion: In the infrared region, at wavelengths longer than about 2µm, the thermal 
emission of the telescope optics can dominate the natural sky background.  

[REQ-0-SRD-0155] The reflectivity of the telescope optics should be as high as possible to 
minimize thermal emission. 
[REQ-0-SRD-0160] The secondary support structure also adds thermal background and its 
optical cross section should be minimized. 

Discussion: Beyond these measures, it may be necessary to cool all optics beyond M1, 
M2, and M3 (which must be in an ambient environment). The brightness of the night 
sky and black body radiation curves are shown in Appendix 4. 

[REQ-0-SRD-0165] Mirrors shall be cleaned frequently to preserve their low emissivity and 
high reflectivity.  



                     TMT.PSC.DRD.05.001.CCR22   Page 20 of 50 

                   SCIENCE REQUIREMENTS DOCUMENT  MARCH 28, 2017 

Discussion: Actual cleaning frequency will depend on site characteristics but is likely to 
exceed 1/month. 

3.1.3 Motion 
3.1.3.1 Slewing and Acquiring 

[REQ-0-SRD-0200] The telescope shall be able to move from any point in the sky to any 
other in less than 3 minutes, and be ready to begin observing. 

Discussion: This time includes time needed to rotate the instrument, rotate the dome, 
acquire a guide star, and set up the ADC and AO system. For the telescope this 
includes moves that may be as much as 360° in azimuth. This implies maximum 
velocities > 2°/s. For the enclosure, these moves may be as large as 180°. 

[REQ-0-SRD-0210] To support the efficient acquisition of science objects, the telescope 
system shall be able to quickly perform accurate acquisition offsets without guider feedback. 
[REQ-0-SRD-0215] To support the efficient acquisition of science objects, the telescope 
system shall be able to perform accurate acquisition offsets of up to 1 degree on the sky. 

3.1.3.2 Pointing and Offsetting 
Definition: Pointing and offsetting are moves done without reference to stars. 
[REQ-0-SRD-0220] Point to 1 arcsec rms in each direction with a goal of 0.5 arcsec rms 
over the whole accessible sky. 

Discussion: Accurate pointing greatly reduces overheads in acquiring fields so that 
science observations can begin. 

[REQ-0-SRD-0225] The telescope system shall be able to perform accurate guider offsets of 
up to 5 arcminutes on the sky. 

Discussion: We assume that motion control at the diffraction limit will be achieved by 
use of the AO tip-tilt optics and the AO wavefront sensor. 

3.1.3.3 Guiding 
[REQ-0-SRD-0235] Guiding/tracking is possible for rates that are up to 10% different from 
sidereal rates and with an error contained within the overall image blur specification in 
2.1.2.2. 

3.1.3.4 Zenith and Azimuth Angle Range 
 

[REQ-0-SRD-0240] The telescope is required to operate within specifications from within 1° 
of zenith to 65° zenith angle 

Discussion: As a goal, the telescope should be able to move to the horizon. This 
configuration might be useful for servicing the secondary mirror or cleaning the optics. 

[REQ-0-SRD-0245] The range and mid-point of telescope azimuth motion shall be sufficient 
to continuously track any sidereal celestial object across the sky between elevation axis 
horizon limits. 

Discussion: The range and center of travel of the azimuth axis must be designed to be 
able to continuously track any object transiting north or south of zenith, within the 
elevation axis horizon limits, without running into an end of travel.  If the operational 
maximum zenith angle were considered the required azimuth range would be very 
slightly smaller that this requirement, but not significantly so. A considerable margin in 
azimuth range in addition to this minimum requirement is expected from the design. 
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3.1.3.5 Nodding, Dithering, and Chopping 
Definition: Telescope nodding and dithering (small steps in either 1 or 2 dimensions) is 
needed to reduce systematic drifts in backgrounds or to improve detector calibration. This is 
a motion of the telescope as a whole. 
[REQ-0-SRD-0250] The TMT must be able to nod (motion of the telescope), spending at 
least 80% of the cycle at the end points. 
[REQ-0-SRD-0255] Position errors at the end points shall be no more than 0.01 arcsec rms 
for seeing-limited observations  
[REQ-0-SRD-0260] Position errors at the end points shall be no more than O/10D for 
diffraction-limited observations 

Discussion: The accuracy needed for diffraction-limited imaging can be achieved with 
AO fast tip-tilt optics.  

[REQ-0-SRD-0265] Nod amplitude of ±1 arcsec with a half period of 10 seconds with 80% 
integration should be possible. 
[REQ-0-SRD-0270] Nod amplitude of ±10 arcsec with a half period of 20 seconds with 80% 
integration should be possible. 
[REQ-0-SRD-0275] Chopping by the secondary mirror is not needed for the TMT 
[REQ-0-SRD-0280] Telescope motions shall be able to support a pattern of non-redundant 
dithers extending over a period of 4 hours with a time interval between two consecutive 
dithers as short as 20 seconds. 

Discussion: Many science programs with deep, pointed observations (e.g., Galactic 
Center) will be using exposure-to-exposure dither motions to remove geometric 
distortions, improve flatfielding and boost spatial resolution. A dither move might follow 
every single exposure, and series of exposures extending over many hours may be 
needed. Furthermore, the dither pattern may not be a regular grid to mitigate spatial 
aliasing. This requirement captures the sustained aspect of this observing mode. It has 
obvious control implications and may also have mechanical implications. 

3.1.4 Instrument Support 
3.1.4.1 Space 

[REQ-0-SRD-0300] Require sufficient space at the telescope foci for large (~400m3) 
instruments, with individual masses <~50 metric tons 

3.1.4.2 Support facilities 
[REQ-0-SRD-0305] Require power, cooling, signal lines, servicing equipment at instrument 
locations. 
[REQ-0-SRD-0310] Also require convenient access to instruments by personnel for 
servicing and repairs. 

3.1.4.3 Rapid access 
[REQ-0-SRD-0315] Require ability to begin observing with any instrument, at night, in <10 
minutes. 

Discussion: With queue scheduled instruments, ready availability is essential for the 
virtues of the scheduling to be gained. Even in classically scheduled observations, the 
ability to switch instruments will allow for rapid reaction to changing conditions or 
targets of opportunity. 

3.1.4.4 Field rotation 
[REQ-0-SRD-0320] Observatory must make suitable plans to correct for field rotation for all 
instruments. Field rotation rates are larger near the zenith, and must satisfy 2.1.3.4. 
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 SITE 

3.2.1 General Description 
The site is not known at this time. The principal parameters to be measured for use in the final 
site analysis are identified and are incorporated into a signal-to-noise based merit function.  
This science metric function to aid in site selection has been developed in collaboration with 
the Site Testing Group. This allows technical/science comparison of site potential. 

3.2.2 Key Astronomical Features 
[REQ-0-SRD-0400] High fraction of clear nights. 
[REQ-0-SRD-0405] Excellent image quality (large r0, easier to achieve AO performance). 
[REQ-0-SRD-0410] Large isoplanatic angle (larger field of view for AO). 
[REQ-0-SRD-0415] Long coherence time of atmosphere (easier for AO). 
[REQ-0-SRD-0420] Smaller outer scale (L0, improved image quality, easier AO). 
[REQ-0-SRD-0425] High fraction of spectroscopic nights. 
[REQ-0-SRD-0430] Low precipitable water vapor distribution (lower IR absorption). 
[REQ-0-SRD-0435] Low typical temperatures (lower thermal background). 
[REQ-0-SRD-0440] High altitude (transparency, low water vapor, low temperature, smaller 
atmosphere dispersion). 

3.2.3 Other Performance Related Features 
[REQ-0-SRD-0455] Low wind speed distribution to limit telescope buffeting. 
[REQ-0-SRD-0460] Minimal change of temperature during the night (telescope and 
instrument athermalization). 
[REQ-0-SRD-0465] Minimal seasonal temperature variations. 
[REQ-0-SRD-0470] Minimal day-night temperature variations. 
[REQ-0-SRD-0475] Latitude (science opportunities, complementary with existing or future 
observatories). 

3.2.4 Cost Related Features 
[REQ-0-SRD-0480] Easy physical access for minimizing construction costs. 
[REQ-0-SRD-0485] Good human access for minimizing operating costs. 
[REQ-0-SRD-0490] Availability of site. 

3.2.5 Other Engineering/Safety Features 
[REQ-0-SRD-0495] High mechanical integrity of soil. 
[REQ-0-SRD-0500] Low seismicity. 

3.2.6 Assumed Model Atmosphere 
For much of what follows, quantitative analysis requires some assumed atmospheric 
characteristics. Even though atmospheric conditions are widely variable, we will define a 
“standard atmosphere” for ease of analysis. This is particularly important for assessing AO 
requirements. The standard atmosphere is described in Appendix 5. 
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 ENCLOSURE 

3.3.1 Opening Size and Tracking 
[REQ-0-SRD-0550] Opening should be sufficiently large to avoid vignetting of light from the 
science field or from laser guide stars. 
[REQ-0-SRD-0555] Enclosure motion should follow motion of the telescope precisely 
enough that vignetting of the science field and or laser guide stars by the dome is avoided. 

Discussion: Stray (IR) radiation from the edge of the shutter should be well separated 
from the field of the telescope. 

3.3.2 Slewing 
[REQ-0-SRD-0560] Enclosure motions should never be a cause of delays in beginning 
scientific observations. 

3.3.3 Wind Protection 
[REQ-0-SRD-0565] Protect the telescope from wind buffeting. 

Discussion: During periods of high wind, wind buffeting of the top end of the telescope 
as well as at the primary are potential concerns.  

[REQ-0-SRD-0570] The telescope specification (2.1.2.2) must be met when integrating over 
the wind speed probability distribution. 
[REQ-0-SRD-0575] The enclosure design should minimize the amplitude and temporal 
frequency of these forces. 

3.3.4 Thermal Control and Locally Induced Seeing 
[REQ-0-SRD-0580] Thermally induced seeing degradation caused by temperature 
differences should be minimized by a suitable combination of natural ventilation, insulation, 
surface emissivity, daytime air conditioning, limiting daytime air leakage, and minimizing 
thermal inertia of the enclosure interior. The goal is to allow the interior to follow the night-
time ambient air temperature as closely as practical. 

3.3.5 Weather Protection 
[REQ-0-SRD-0585] The enclosure shall protect the telescope against storms, other weather, 
and daytime air leakage. 

Discussion: Water and ice should not be allowed into the enclosure interior.  

[REQ-0-SRD-0590] Condensation on the optics should be prevented at all times. 
[REQ-0-SRD-0595] Liquid drips on the primary should be avoided. 
[REQ-0-SRD-0600] At night, the enclosure should be operable at all times in good weather. 
[REQ-0-SRD-0605] The design of the enclosure should minimize the buildup of snow and 
ice and provide for easy removal of snow and ice to allow for observing after storms. 
[REQ-0-SRD-0610] Daytime infiltration is a potential source of excess heat and needs to be 
minimized. 

3.3.6 Dust Protection 
[REQ-0-SRD-0615] Design of the enclosure should minimize the accumulation of dust on 
the telescope. 

Discussion: This is to avoid problems of stray light and increased emissivity caused by 
accumulation of dust on the telescope optics. For example, this could be achieved by 
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not allowing free infiltration of outside air during the day and by minimizing horizontal 
surfaces on which dust can accumulate above the level of the telescope. 

3.3.7 Opening and Closing 
[REQ-0-SRD-0620] The enclosure must open or close in under 2 minutes to protect against 
sudden changes in weather. 

3.3.8 Servicing 
[REQ-0-SRD-0625] Observatory must provide suitable servicing facilities for telescope, 
optics, AO, and instruments 

 ADAPTIVE OPTICS  
There are a number of different science observational modes requiring adaptive optics to 
achieve diffraction-limited performance in the 0.6µm-28µm wavelength range. Here we 
summarize these modes; more detailed requirements are presented below 

x Narrow Field, Diffraction-Limited, Near-IR, or Narrow Field IR Adaptive Optics 
System (NFIRAOS): We expect this mode will be used for NIR spectroscopy with an 
on-axis IFU or slit sampled at or near the diffraction limit. The delivered field need only 
be 10 arcsec for this application (but with nearly 100% sky coverage), but in addition, a 
contiguous 30cc field is required that delivers near-IR images of high Strehl to an 
imager or other instrument. The primary scientific drivers of this system are precision 
photometry of point sources in crowded fields, and precision astrometry. Ideally this 
system should work over the whole range 0.6-2.5Pm with high Strehl ratio. In addition, 
NFIRAOS should provide significant image size reduction over a field of view of 2.3 
arcmin diameter to allow multi-object spectroscopy. All spectroscopic applications 
require that the system emissivity is kept low for high sensitivity at wavelengths > 
1.6Pm. 

x Wide Field, Near-Diffraction-Limited, or Multiple Object Adaptive Optics (MOAO): 
This mode involves correction of a number of small discrete angular regions (1-5cc) 
distributed throughout a 5c field. This capability is envisioned to provide diffraction-
limited images to deployable IFUs for multiplexed spectroscopy of ~10-20 objects. This 
is the system to be used for the most sensitive observations of extremely faint objects 
in the 0.6-2.5µm range, and should be optimized for throughput and low emissivity. 

x Small Field, Diffraction-Limited Mid-IR (MIRAO): the highest priority mid-IR science 
(5-28µm) requires only a small field of view, since it is feeding an echelle 
spectrometer. However, high sky coverage is required and near-IR wavefront sensing 
may be required for some science applications. 

3.4.1 Overall efficiency of Adaptive Optics modes 
[REQ-0-SRD-0700] The AO systems should be available on 10-minute notice. 
[REQ-0-SRD-0705] Down time due to technical problems should be under 1%. 
[REQ-0-SRD-0710] Night-time calibration should need no more than 1% of the observing 
time. 

3.4.2 Small Field, Diffraction-Limited, Near-IR (NFIRAOS) 
3.4.2.1 General description 

This AO system is intended to deliver diffraction-limited images over a small field, sufficient for 
either an IFU or a slit, and provide a contiguous 30 arcsec field that delivers near-IR images of 
high Strehl ratio to an imager. The primary scientific drivers of this system are diffraction-
limited IFU or echelle spectroscopy, precision photometry of point sources in crowded fields, 
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and precision astrometry. In addition, NFIRAOS must provide very significant reduction of 
image size over a field up to 2.3 arcmin. Instruments to be fed by NFIRAOS include a multislit 
spectrometer with a 2.3 arcmin field of view. A natural guide star mode is also needed, with 
the largest practical sky coverage at a level of performance that delivers a Strehl ratio of at 
least 0.5 in the K band, using a 16.5th magnitude guide star. 

3.4.2.2 Wavelength range 
[REQ-0-SRD-0800] Over 0.8-2.5µm the throughput should exceed 85%, goal is 0.6µm to 
2.5µm 

Discussion: The throughput requirement applies to the AO system alone. Poor 
throughput becomes emissivity at the temperature of the AO system. 

3.4.2.3 Field of view 
 

[REQ-0-SRD-0805] The diameter of the field of view should be 30 arcsec with high Strehl 
ratio. 
[REQ-0-SRD-0810] There should be no vignetting over a 2.0 arcmin field of view. 
[REQ-0-SRD-0815] No more than 30% vignetting over a 2.3 arcmin field of view, and useful 
AO correction should be achieved over this field. 

Discussion: The 30 arcsec field is intended to support IFU spectroscopy and imaging at 
the diffraction limit with a science instrument such as IRIS or WIRC. The 2.3 arcmin 
field requirement is intended to service a multi object (multi slit) spectrometer that can 
use this field (e.g., IRMS). 

3.4.2.4 Image/wavefront quality 
[REQ-0-SRD-0820] Tilt-removed RMS wavefront error should be less than 173 nm on axis, 
in median seeing conditions, for NFIRAOS with a goal of less than 120nm for NFIRAOS 
upgrade 

Discussion: RMS tip-tilt errors should be as small as natural guide star density will 
allow. All wavefront errors except tip-tilt are included, down to the instrument detector. 
The intent is to achieve Strehl ratios of better than 0.5 at 1Pm for feeding a diffraction- 
limited slit or IFU. Achieving the stated photometric and astrometric accuracy is critical. 
An ADC will be needed and should be in the AO system or instrument 

[REQ-0-SRD-0825] Tilt-removed RMS WFE should be less than 190nm over a 30 arcsec 
field of view, in median seeing conditions, for NFIRAOS with a goal of less than 133nm for 
NFIRAOS upgrade. 

Discussion: RMS tip-tilt errors should be as small as natural guide star density will 
allow. All wavefront errors except tip-tilt are included, down to the instrument detector. 
The intent is to achieve Strehl ratios of better than 0.5 at 1Pm for feeding a diffraction- 
limited slit or IFU. Achieving the stated photometric and astrometric accuracy is critical. 
An ADC will be needed and should be in the AO system or instrument 

[REQ-0-SRD-0835] Over a larger 2.3 arcmin field of view, we would like the image size to 
be small, so slits with 160-250mas slit width will collect most of the energy. 
[REQ-0-SRD-0840] Under median conditions, the J band energy in a 160mas slit should be 
at least 30% averaged over the field of view. 

Discussion: Seeing-limited value is 9%. 

[REQ-0-SRD-0845] Under median conditions, the K band energy in a 160mas slit should be 
at least 50% averaged over the field of view. 

Discussion: Seeing-limited value is 13%. 
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3.4.2.5 Sky coverage 
[REQ-0-SRD-0850] Sky coverage should be > 50% at the galactic poles, with < 2 mas rms 
tip-tilt jitter. 

Discussion: Sky coverage is limited by the density of natural guide stars for tip/tilt 
correction. We anticipate that tip/tilt sensing will be done in the infrared in order to take 
advantage of image sharpening by the AO system. Such infrared tip-tilt guide stars will 
be particularly useful for imaging of obscured regions where visible tip-tilt stars may be 
absent. See appendix 6 for a discussion. 

3.4.2.6 Background 
[REQ-0-SRD-0855] The AO system should not increase the (inter-OH) background by more 
than 15% over natural sky (see Appendix 4) + telescope background (assume 5% emissivity 
at 273K). 

Discussion: If the inter-OH brightness is 0.01 of the K mag sky, then a 273° black body 
has an equal flux at 1.8µm. A three-mirror telescope with net emissivity of 0.05 matches 
this sky at 2.0µm. Black body emission at 2µm is reduced a factor of 10 by cooling 22°. 
Thus, an AO system with an emissivity of 0.05 must be cooled about 20° below 
ambient to meet this requirement. 

 
3.4.2.7 Differential Photometric Precision 

[REQ-0-SRD-0860] Systematic errors in differential photometry due to PSF residual spatial 
variability should be under 2% for 10-minute integrations, at 1µm, over the 30 arc-sec FOV.  

Discussion: A single standard star is assumed for each image. 

3.4.2.8 Absolute Photometric Accuracy 
[REQ-0-SRD-0865] With suitable observations of photometric standards, photometry on an 
absolute scale should be possible to <10% with a goal of 5%. 

3.4.2.9 Differential Astrometry 
[REQ-0-SRD-0870] Residual time-dependent rms distortions (after a fit to physically allowed 
distortion measured with field stars) should be no larger than 50 µas in the H band, for a 
100s integration time. Errors should fall as t-1/2. These are one-dimensional position 
uncertainties. This should be achieved over a 30 arcsec FOV. Systematic errors should be 
no more than 10 µas. 

Discussion: We assume that there will be modest static field distortions, but these will 
be removed by initial calibration and the use of field stars within the image that can 
remove residual “static” errors that the AO system might introduce, dependent on the 
exact tip-tilt guide star configuration. It is important that errors fall below the 50 µas 
requirement, with greater integration time, as this will enable important scientific 
programs. Every effort should be made to achieve a 10 µas floor, or less. 

3.4.2.10 Operational Modes: 
3.4.2.10.1 Multiple lasers 

[REQ-0-SRD-0875] In order to achieve significant sky cover as described above, multiple 
synthetic beacons (Na guide stars) are expected to be needed in order to tomographically 
measure the atmosphere and allow the desired AO correction. 

3.4.2.10.2 Single Natural Guide Star, no Lasers. 
[REQ-0-SRD-0880] The system should be operable with a single bright natural star, 
producing rms wavefront errors of <157 nm on axis, in median seeing, using an R < 8 
magnitude star. The natural angular limits imposed by the isoplanatic angle are acceptable. 
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[REQ-0-SRD-0881] The system should be operable with a single bright natural star, 
producing rms wavefront errors of <185 nm on axis, in median seeing, using an R < 12 
magnitude star. The natural angular limits imposed by the isoplanatic angle are acceptable. 

3.4.2.11 Operational Efficiency-Dithering 
[REQ-0-SRD-0885] Dither pattern losses should be under 1 second for up to 5 arc-sec and 
5 sec for up to 30 arc-sec. 
[REQ-0-SRD-0890] Dither patterns may have moves from 1-30 arc-sec. 

Discussion: We want the MCAO setup to be fully automated, and have as a goal that 
the setup time is 1 minute. The dither spec needs to go into the telescope motion specs 
as well. The dither specs relate to moving the tip-tilt guider mechanisms. 

3.4.3 Wide Field, Near-Diffraction-Limited (0.6-2.5µm) (MOAO) 
3.4.3.1 General description 

This AO system is intended to deliver Na-laser-based tomographic knowledge over a large 
field of view (~ 5 arcmin) and apply that knowledge to making excellent wavefront correction 
over small selected subfields within the larger field. Conceptually, IFU’s could then be 
distributed over this field and could be fed diffraction-limited images for analysis. 

 
3.4.3.2 Wavelength range 

[REQ-0-SRD-0900] From 0.6µm to 2.5µm the throughput should exceed 85%. 

Discussion: Due to high backgrounds, the number of objects detectable in the 3-5µm 
window is greatly reduced relative to the object density at shorter wavelengths. Thus, 
the long wavelength cutoff is set to 2.5µm. Single object work is discussed in 2.4.1. 

3.4.3.3 Field of View 
[REQ-0-SRD-0905] Each AO-corrected “patch” needs to be 1-5 arcsec, with as many as 10-
20 such patches at adjustable positions over a 20 arcmin2 region. 
[REQ-0-SRD-0910] Minimum separation between AO patches: goal should be as small as 
20 arcsec. 

Discussion: A 5-arcmin field matches the size of the JWST imaging field. The typical 
sizes of objects of interest will be 0.1-2 arcsec; the surface density of potential targets 
will range from a few over the 5-arcmin field to tens per square arc minute. A 
reasonable IFU sampling and field size would be 0.05 arcsec samples over a 2 arcsec 
field, or roughly 40 x 40 spatial sampling per IFU head. Note that this is roughly 3 times 
the diffraction limit at 2Pm. When a larger contiguous field is desired (~ 5 arcsec) 
somewhat coarser sampling may be used. 

3.4.3.4 Image/wavefront quality 
[REQ-0-SRD-0915] At least 50% of the flux from a point source at 1µm wavelength should 
go into a 0.05 arcsec square. 

Discussion: Much of the anticipated use of MOAO will be to study extended objects 
where sampling of 0.05 arcsec is sufficient. Thus, a figure of merit on enclosed energy 
is appropriate. The given specification is likely similar to a wavefront error requirement 
of 130 nm, excluding tip and tilt. 

3.4.3.5 Sky coverage 
[REQ-0-SRD-0920] Sky coverage should be at least 90% at the galactic poles.  

Discussion: The density of natural guide stars for tip/tilt correction limits sky coverage. 
Because the image quality tip-tilt requirements here are somewhat relaxed, seeing 
limited guide star image quality may be sufficient. See Appendix 6 for a discussion. 
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3.4.3.6 Background 
[REQ-0-SRD-0925] The AO system should not increase the (inter-OH) background by more 
than 15% over natural sky (see Appendix 4) + telescope background (assume 5% emissivity 
at 273K). 

Discussion: If the inter-OH brightness is 0.01 of the K mag sky, then a 273° black body 
has an equal flux at 1.8µm. A three-mirror telescope with net emissivity of 0.05 matches 
this sky at 2.0µm. Black body emission at 2µm is reduced a factor of 10 by cooling 22°. 
Thus, an AO system with an emissivity of 0.05 must be cooled about 20° below 
ambient to meet this requirement. 

3.4.3.7 Laser Asterism and Flexibility 
[REQ-0-SRD-0930] Lasers must be deployable in a flexible way over the 5-arcmin-diameter 
field to maximize the effectiveness of the AO correction depending on the geometry of the 
field being observed and the distribution of targets within it. 

3.4.4 Small Field, Diffraction-Limited Mid-IR (MIRAO) 
3.4.4.1 General description 
 
The highest priority mid-IR science (4.5-28µm) requires only a small field of view, since it is feeding 
an echelle spectrometer. However, high sky coverage is required and near-IR wavefront sensing 
may be required for some science applications, both for improved tip-tilt errors and for working in 
obscured regions. 
3.4.4.2 Wavelength range 

[REQ-0-SRD-0950] From 4.5µm to 28µm the throughput should exceed 85% 
3.4.4.3 Field of view 

[REQ-0-SRD-0955] Field of view shall be 10 arcsec with a goal of 1 arcmin 

Discussion: Goal field of view will allow future imaging modes. 

3.4.4.4 Image/wavefront quality 
[REQ-0-SRD-0960] Wavefront error <750 nm rms, goal< 350 nm rms 

Discussion: We understand that this implies poor performance at L band (3.8µm); we 
envision that L band imaging could be accomplished with MOAO and L-band 
spectroscopy with NFIRAOS/NIRES (if the AO system allows). 

3.4.4.5 Sky coverage 
[REQ-0-SRD-0965] Sky coverage should be all sky, limited only by availability of natural tip-
tilt stars 

Discussion: System should be operable with natural guide stars. Natural guide stars will 
probably not provide all sky coverage for the AO correction and need to be 
supplemented with laser beacons. Here the coverage will be limited by the availability 
of natural tip-tilt stars. See Appendix 6 for details. 

3.4.4.6 Background 
[REQ-0-SRD-0970] The AO system should not increase the N band background by more 
than 15% over natural sky (see Appendix 4) + telescope background (assume 5% emissivity 
at 273K). 

Discussion: In order to reduce black body flux at 10µm by a factor of 10, the body must 
be cooled to 85 K. 
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3.4.4.7 Photometry 
[REQ-0-SRD-0975] Systematic, uncalibrated errors in photometry due to PSF residual 
spatial variability < 5% in the N (10µm) band over 1 arcmin field. 

3.4.4.8 Astrometry 
[REQ-0-SRD-0980] Differential astrometry is important, and the AO system should provide 
sufficient calibration information so as not to degrade the astrometric capabilities beyond the 
limits set by the atmosphere. 

 EARLY LIGHT INSTRUMENTS 
We describe 4 instruments that will be available in the early years of the Observatory. The 
instrument choice is influenced by several factors. Unique scientific advantage comes from 
diffraction-limited imaging (AO based). Many important optical spectroscopic problems exist 
that greatly benefit from the increased collecting area, along with multi-object capability, and 
should be done in dark time. We expect that roughly 50% of the time we will use the telescope 
for seeing limited observations. Many cosmological problems benefit from collecting IR 
spectra from many objects, but do not require diffraction-limited images, since the objects are 
small, but extended (�0.1 arcsec). 
Background light can influence the sensitivity of all instruments. For observations shortward of 
about 1.8µm, the brightness of the sky is a more important background than thermal radiation 
from the optics and telescope. For these observations, optical baffles are often used on 
telescopes to shield the focal plane from any light outside of the designed field of view. 
However, these same shields can add thermal background to longer wavelength 
observations.  
Our solution to this issue is to require the instruments provide suitable baffles, rather than the 
telescope.  
Atmospheric dispersion can adversely affect many observations. Atmospheric dispersion 
compensators need to be designed and built into the telescope, the AO system or the science 
instruments. Design options and locations are complex and still under discussion. The basic 
dispersion facts are given in Appendix 8. 

3.5.1 InfraRed Imaging Spectrometer (IRIS) 
3.5.1.1 General description 

This instrument is intended to provide diffraction-limited moderate spectral resolution 
(R~4000) spectra and images over a small field of view, using an integral field unit (IFU). It 
also must obtain diffraction-limited images over a >15-arcsec field. This instrument relies on 
AO and uses the unique diffraction-limited resolution of TMT. 
This instrument will use the small field diffraction-limited, near-IR AO system, NFIRAOS 
(2.4.2) or possibly the wide field, near-diffraction-limited AO system, MOAO (2.4.3).  
Science cases for this instrument include studies of very small crowded fields and detailed 
astrophysical dissections of individual objects. 

3.5.1.2 Wavelength range 
[REQ-0-SRD-1000] 0.8-2.5µm, goal 0.6-5µm 

3.5.1.3 Field of view 
[REQ-0-SRD-1005] Up to 3 arcsec for IFU 
[REQ-0-SRD-1010] Imaging mode >15x15 arcsec. 

Discussion: The imager in IRIS will be responsible for most near-IR diffraction-limited 
imaging with TMT during early light; larger fields of view and/or multiple imaging fields 
each of which satisfies the above requirement is a goal. 

3.5.1.4 Image quality 



                     TMT.PSC.DRD.05.001.CCR22   Page 30 of 50 

                   SCIENCE REQUIREMENTS DOCUMENT  MARCH 28, 2017 

[REQ-0-SRD-1015] Wavefront quality delivered by the AO system should be preserved for 
all modes in which the diffraction limit is critically sampled. 
[REQ-0-SRD-1020] In the case of coarser IFU plate scales, the instrument should not 
decrease the ensquared energy per spatial pixel by more than 10% over that provided by 
the AO system. 
[REQ-0-SRD-1025] At least one imager field should be close enough to the optical axis of 
the AO science field that it is within the range for re-positioning the optimal AO correction. 
This field will be used for imaging programs demanding the best possible image quality. 

3.5.1.5 Spatial sampling 
 

[REQ-0-SRD-1030] Imager: 0.004 arcsec per pixel (Nyquist sampled at 1 micron) over 
4096x4096 pixels would provide a 16.4 arcsec square field.  
[REQ-0-SRD-1035] IFU: Plate scales selectable 0.004, 0.010, 0.025, 0.050 arcsec/pixel with 
64x64 spatial samples, corresponding to IFU fields of view of 0.26, 0.64, 1.60, and 3.29 
arcsec, respectively. 

3.5.1.6 Spectral resolution and coverage 
[REQ-0-SRD-1040] R>3500 over entire Y, J, H, K bands, one band at a time; a larger IFU 
field of view with smaller wavelength coverage would be desirable for some applications. 
[REQ-0-SRD-1045] R=5-100 for imaging mode.  

Discussion: A facility allowing a tunable narrow band for specialized imaging 
applications would be a goal, if feasible. 

3.5.1.7 Background 
[REQ-0-SRD-1050] The instrument should not increase the (inter-OH) background by more 
than 15% over natural sky (see Appendix 4) + telescope background (assume 5% emissivity 
at 273K).  
[REQ-0-SRD-1055] In imaging mode the instrument should not increase the K-band 
background by more than 15% over natural sky. 

3.5.1.8 Astrometry 
[REQ-0-SRD-1060] Residual time-dependent rms distortions (after a fit to physically allowed 
distortion measured with field stars) should be no larger than 50 µas in the H band, for a 
100s integration time. Errors should fall as t-1/2. These are one-dimensional position 
uncertainties. This should be achieved over a 30 arcsec FOV. 
[REQ-0-SRD-1065] Systematic errors should be no more than 10 µas. 

Discussion: We assume that there will be modest static field distortions, but these will 
be removed by initial calibration and the use of field stars within the image that can 
remove residual “static” errors that the AO system might introduce, dependent on the 
exact tip-tilt guide star configuration. It is important that errors fall below the 50 µas 
requirement, with greater integration time, as this will enable important scientific 
programs. Every effort should be made to achieve a 10 µas floor, or less. 

3.5.1.9 Sensitivity 
[REQ-0-SRD-1070] Detector dark current and read noise shall not increase the effective 
background by more than 5% for an integration time of 1000 s. 

Discussion: In the 1-2.5µm region, dark current �0.002 e-/s and read noise � 2e- after 
multiple reads should be sufficient. Existing detectors can achieve dark currents of 
0.002e-/s and read noises of ~ 3-6e. 

[REQ-0-SRD-1075] Sky subtraction accuracy for IFU modes should be limited by the photon 
statistics of the background for integrations >600s for the two coarsely sampled IFU modes. 
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3.5.1.10 Throughput 
[REQ-0-SRD-1080] High throughput is important for this instrument, particularly for the 
coarsely sampled IFU modes. Instrumental throughput of >30% should be achievable 
(excluding the AO system and telescope). 

3.5.2 Infrared Multi-Object Spectrometer (IRMS) 
 
3.5.2.1 General Description 

IRMS is a near diffraction-limited instrument that can gather multi-object near IR spectra over 
a 2 arcmin field of view. It is intended to allow some of the science objectives of 
MOAO/IRMOS but be simpler, less risky, less expensive, and available for first light. It is 
expected to be a clone of the MOSFIRE instrument being built for Keck Observatory, thus 
greatly reducing its risk and cost. It will have cryogenic adjustable slit masks. It is expected to 
operate behind NFIRAOS with the image quality that NFIRAOS can deliver. 

3.5.2.2 Wavelength Range 
[REQ-0-SRD-1100] 0.95-2.45µm range 

3.5.2.3 Field of view 
[REQ-0-SRD-1105] 2.05x 2.05 arcmin square unvignetted field of view with AO correction 
by NFIRAOS. The MOSFIRE field of view is 2.26 arcmin diameter 

Discussion: A 2048x2048 detector with 18 micron pixels will cover a 2.03 arcmin 
square field, though the full field allowed by the instrument optics would be 2.26 arcmin 
in diameter. 

3.5.2.4 Total slit length 
[REQ-0-SRD-1110] 46 adjustable cryogenic slits with total slit length of up to 120 arcsec. 
Slits have discrete lengths of 2.43 arcsec and can be combined as desired in discrete steps. 
Gaps between slits are 0.17” when slits are not aligned into longer contiguous units. Slit 
widths are continuously variable. Slit mask remotely configurable in 3-5 minutes. 

3.5.2.5 Image quality 
[REQ-0-SRD-1115] >80% ensquared energy in 0.12” by 0.16” (2 pixel) box in spectroscopic 
mode; rms image diameters <0.07” in direct imaging mode over full bandwidth without re-
focus.  

Discussion: This is based on MOSFIRE optics. 

3.5.2.6 Spatial sampling 
[REQ-0-SRD-1120] Sampling will be 0.060 arcsec/pixel in the spatial direction and 0.08 
arcsec/pixel in the dispersion direction, for a 2Kx2K detector with 18µm pixels that cover 
2.05 arcmin x 2.05 arcmin.  

Discussion: This is much coarser than the diffraction limit, but well suited to the slightly 
extended distant galactic targets that are its primary science objectives. It may be 
advantageous to use a 40962, 10µm pitch detector and achieve sampling of 0.033 
arcsec and cover a full 2.26 arcmin field. 

3.5.2.7 Spectral resolution and coverage 
[REQ-0-SRD-1125] R=3270 with 3 pixel slit (0.24 arcsec) 
[REQ-0-SRD-1130] R=4660 with 2 pixel slit (0.16 arcsec) 
[REQ-0-SRD-1135] All of Y, J, H or K for slits placed at the center of the field. Dispersion 
achieved with a reflection grating used in order 6, 5, 4, and 3 with two grating angles, 
optimized for Y/J or H/K.) 
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Discussion: It is feasible to obtain spectra covering Y+J or H+K at the same resolution 
by inserting a cross-dispersing grism in the filter wheel. In this mode, the multiplex 
advantage would be halved, but the wavelength coverage would be doubled. 

 
3.5.2.8 Imaging 

[REQ-0-SRD-1140] Entire NFIRAOS 2 arcmin field of view with 0.06 arcsec sampling for 2k 
x 2k 18micron pitch detector; goal 0.033” sampling for 4k x 4k 10 micron device. 

3.5.2.9 Throughput 
[REQ-0-SRD-1145] >40% for imaging; >30% on order blaze in each band. 

3.5.2.10 Sensitivity 
[REQ-0-SRD-1150] Instrument background should not increase the inter-OH background by 
more than 10% over the natural sky+telescope +AO system background. Spectroscopic 
observations shall be background-limited for any exposure > 60 seconds. 

3.5.3 Wide Field Optical Imaging Spectrometer (WFOS) 
3.5.3.1 General Description 

WFOS is a seeing-limited, multi-object spectrometer and imager with a large field. This 
instrument fills a broad capability for optical and near-UV observations of very faint sources. 
An ADC will be required. If partial AO image correction proves feasible, a detailed review of its 
capabilities and these requirements will be required. 

3.5.3.2 Wavelength range 
[REQ-0-SRD-1200] 0.31 - 1.0µm (required); 0.3 - 1.5µm (goal) 

Discussion: The initial performance of the telescope mirrors in the UV may limit the 
wavelength range to > 0.34µm; however, the spectrograph optics should work as 
closely as possible to the atmospheric limit (0.32 µm for 3000m sites, 0.31 µm for 
4000m sites). When used at spectral resolution R~1000, it should be possible to record 
the whole wavelength range in a single exposure. At the highest spectral resolution, the 
widest possible wavelength coverage should be obtained in a single exposure. It may 
be advantageous to optimize the performance vs. wavelength using multiple arms and 
a dichroic beamsplitter.  

3.5.3.3 Field of view 
[REQ-0-SRD-1205] >40 arcmin2, goal >100 arcmin2 

Discussion: The field need not be contiguous. Imaging is required over the same field 
of view. While larger fields are very beneficial, the total slit length is more important than 
total field area.  

3.5.3.4 Total slit length 
[REQ-0-SRD-1210] Total slit length shall be � 500 arcsec. 

Discussion: The total slit length is the most important factor for a greater multiplex 
advantage. A single, contiguous field may provide practical advantages for field 
acquisition and mechanical simplicity, all other things being equal. 

3.5.3.5 Image quality 
[REQ-0-SRD-1215] For imaging, image quality � 0.2 arcsec FWHM over any 0.1µm 
wavelength interval. 

 
[REQ-0-SRD-1220] For spectroscopy, image quality less than 0.2 arcsec FWHM at every 
wavelength without re-focus. 
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Discussion: These apply to the spectrograph optics alone, and do not include the 
atmosphere or the telescope contributions to final image quality. 

[REQ-0-SRD-1225] Image positions must be achromatic at the 0.05 arcsec level over the 
full range of telescope zenith distances. 

Discussion: This requirement implies that an ADC must provide adequate correction 
over the spectrograph wavelength range. The ADC may be permanently in place (i.e., 
not removable from the beam) as long as its optical throughput is 95% or greater.  

3.5.3.6 Spatial sampling 
[REQ-0-SRD-1230] < 0.15 arcsec per pixel, goal < 0.1 arcsec 

3.5.3.7 Spectral resolution 
[REQ-0-SRD-1235] R = 1000-1500 for low-resolution mode; R>5000 for high-resolution 
mode, each for a slit of width 0.75 arcsec slit. Goal: R>7500 for high resolution mode.  

Discussion: Complete spectral coverage in low-resolution mode is required; complete 
coverage is desirable in the high-resolution mode.  

3.5.3.8 Throughput 
[REQ-0-SRD-1240] � 30% from 0.31 - 1.0µm. 

Discussion: For seeing limited instruments, high throughput is essential in order to 
maintain the collecting area advantage over other telescopes. Throughput should be as 
good as that of the best existing spectrometers. This includes everything from the 
telescope focal plane to the detected photons.  

3.5.3.9 Sensitivity 
[REQ-0-SRD-1245] Spectra should be photon noise limited (negligible systematic errors 
from background subtraction, negligible detector read noise and dark current) for any 
exposure longer than 300 seconds.  

Discussion: In order to achieve photon-statistics-limited sky subtraction nod and shuffle, 
or fast beam-switching may be required. 

3.5.3.10 Field Acquisition 
[REQ-0-SRD-1250] Field acquisition for multi-slit masks must be short (< 3 minutes once 
telescope is in position). 
[REQ-0-SRD-1255] Fast (< 1 min) acquisition of single targets onto a long slit must be 
supported. 

Discussion: This capability is crucial for follow-up of transient objects. It may imply the 
need for a slit-viewing acquisition camera.  

3.5.3.11 Desirable features 
 

[REQ-0-SRD-1260] Cross-dispersed mode for smaller sampling density and higher R. 
[REQ-0-SRD-1265] Imaging through narrowband filters (0.5-1% bandwidth filters). 
[REQ-0-SRD-1270] IFU option 
[REQ-0-SRD-1275] AO based image quality improvements (i.e., GLAO). 
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 FIRST DECADE INSTRUMENTS 

3.6.1 Near-InfraRed, Multi-Object Spectrometer (IRMOS) 
3.6.1.1 General Description 

IRMOS is envisioned to work behind the wide field AO system (MOAO) that delivers 
individually corrected small fields of view over a large (5 arcmin) field of view. Each deployable 
AO corrector will then connect to its deployable IFU that will sample the field of view (�3 
arcsec) and feed the spatially divided information into a spectrometer. Each spectrometer may 
process information from multiple IFU’s depending on the actual instrument design. 
This instrument is intended to study multiple extended objects. Because they are extended, 
spatial resolution ~ 0.05 arcsec is anticipated to be typical, depending on the size of the 
objects, the spatial channels available, and the sampling density desired. 
With such coarse sampling, it is expected that the required tip-tilt stability can be relaxed for 
the AO system. 

3.6.1.2 Wavelength Range 
[REQ-0-SRD-1300] 0.8 - 2.5µm. 

Discussion: The low density of observable sources beyond 2.5µm makes coverage 
beyond 2.5µm unnecessary. 

3.6.1.3 Field of Regard 
[REQ-0-SRD-1305] IFU heads deployable over >2 arcmin diameter field, with each IFU 
head covering 3x3 arcsec (TBC). A goal is a field of regard of 5 arcmin in diameter. 

3.6.1.4 Image quality 
[REQ-0-SRD-1310] The instrument should not degrade the image quality delivered by the 
AO system (50% ensquared energy in 0.050 arcsec) 

3.6.1.5 Spatial sampling 
[REQ-0-SRD-1315] Sampling: 0.05x0.05 arcsec (other scales TBD). Goal: additional 
sampling when needed of 0.01 arcsec. 
[REQ-0-SRD-1320] IFU head size: 3.0cc IFU heads. 

 
[REQ-0-SRD-1325] Number of IFU units: �10. 
[REQ-0-SRD-1330] Smallest head separation on the plane of the sky: as small as practical, 
no greater than 20 arcsec. 

3.6.1.6 Spectral Resolution 
[REQ-0-SRD-1335] R= 2000-10000. 
[REQ-0-SRD-1340] Complete atmospheric band covered in a single exposure at R=4000. 

3.6.1.7 Throughput 
[REQ-0-SRD-1345] High throughput is important for this instrument (>30%). 

3.6.1.8 Background 
[REQ-0-SRD-1350] The instrument should not increase the (inter-OH) background by more 
than 15% over natural sky (see Appendix 4) + telescope background (assume 5% emissivity 
at 273K). 

3.6.1.9 Detector 
[REQ-0-SRD-1355] Detector dark current and read noise shall not increase the effective 
background by more than 5% for an integration time of 600 s. 

Discussion: In the 1-2.5µm region, dark current �0.002 e-/s and read noise � 5e- after 
multiple reads should be sufficient. 
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3.6.2 Mid-IR Echelle Spectrometer (MIRES) 
3.6.2.1 General description 

MIRES will be fed by the MIRAO system. Large sky coverage is desired, so the AO system 
will probably be fed either by natural guide stars (NGS) or lasers. The AO correction location 
(deformable mirror) is unknown at this time. It could be with an adaptive secondary, or with a 
deformable mirror downstream. In order to keep thermal backgrounds to a minimum, a 
downstream deformable mirror should be cold. 
The guider for this instrument might be associated with the AO system. This instrument might 
be a slit instrument or could be an IFU fed spectrometer. It is desirable (goal) that this 
instrument can also serve as a mid IR imager. 

3.6.2.2 Wavelength range 
[REQ-0-SRD-1400] 8µm- 18µm, goal 4.5-28µm 

 
3.6.2.3 Field of view of field acquisition camera 

[REQ-0-SRD-1405] 10 arcsec, Nyquist sampled at 5µm (0.017 arcsec pixels) 

Discussion: A field acquisition camera is needed for accurate positioning of the science 
object onto the diffraction-limited slit. The images should be of scientific quality (low 
distortion, good uniformity, etc.). This camera can work in K band. 

3.6.2.4 Field of view of science camera 
[REQ-0-SRD-1410] As a desirable goal, a science camera shall be provided with the same 
field of view and sampling as the acquisition camera (10 arcsec and Nyquist Sampling at 5 
um).  

Discussion: This camera should work in N (10µm) band at least, and be able to image 
through narrow band filters. 

3.6.2.5 Slit Length 
[REQ-0-SRD-1415] > 3 arcsec, sampled at 0.04 arcsec/pixel 

Discussion: This slit length should accommodate nodding along the slit. 

3.6.2.6 Spectral Resolution 
[REQ-0-SRD-1420] 5000�R�100,000 (diffraction-limited slit) 
[REQ-0-SRD-1425] Single exposures at R=100,000 should give continuous coverage over 
the orders imaged, 8 - 14µm 

Discussion: R=50K-100K is the prime scientific region, and >100,000 is deemed 
valuable. Maximum detector size is likely to be bounded by 2Kx2K. 

3.6.2.7 Background 
[REQ-0-SRD-1430] The instrument should not increase the N band background by more 
than 15% over natural sky (see Appendix 4) + telescope background (assume 5% emissivity 
at 273K). 

Discussion: Integration time to reach a given SNR will be proportional to the total 
background. 

3.6.2.8 Throughput 
[REQ-0-SRD-1435] High throughput is a priority for this instrument; > 20% should be 
achievable. 

3.6.2.9 Sensitivity 
[REQ-0-SRD-1440] Sensitivity should be limited by photon statistics in the background, and 
not limited by any systematic errors, up to an 8 hr integration. 
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3.6.2.10 Nodding 

[REQ-0-SRD-1445] The telescope with feedback from MIRES shall be able to support small 
motions along a slit that will keep the science target within a slit width of 0".10 to maintain the 
slit light loss below 30%. 
[REQ-0-SRD-1450] Range should cover length of slit at an accuracy of O/10D at 8µm 
[REQ-0-SRD-1455] Frequency-amplitude constraints are TBD 

Discussion: Nodding is viewed as the process by which we move the telescope optical 
axis (moving the telescope). We expect to nod along the slit, distances of many O�D. 
Actual nodding requirements should be based on a careful study of the time variability 
of the telescope backgrounds. Goal is to reach the theoretical sensitivity limited by 
photon statistics. 

3.6.2.11 Chopping 
[REQ-0-SRD-1460] No chopping is required.  

Discussion: Chopping is probably not needed for high-resolution spectroscopy. Broad 
band imaging may require chopping to reach theoretical sensitivity. Actual requirements 
should be based on a careful study of the time variability of the detectors. 

3.6.2.12 Duty cycle 
[REQ-0-SRD-1465] At least 80% 

Discussion: This is the integration time per clock time, limited by nodding and chopping. 

3.6.3 Planet Formation Instrument (PFI) 
3.6.3.1 General description 

PFI instrument seeks to directly image and obtain low-resolution spectra of extra-solar 
planets, including reflected light detection of mature giant planets in the solar neighborhood 
and imaging of thermal emission from forming protoplanets in star-forming regions such as 
Taurus and Ophiuchus. PFI requires a sophisticated AO system with high accuracy and 
stability, as well as a coronagraph or similar instrument to block the starlight. This instrument 
should be capable of detecting planets that are 108 to 109 fainter than the parent star, at 
distances from the star as small as 30mas. 

3.6.3.2 Wavelength range 
[REQ-0-SRD-1500] 1-2.5µm, goal 1-5µm 

3.6.3.3 Field of view 
[REQ-0-SRD-1505] 0.03-1 arcsec radius with respect to star 

3.6.3.4 Image quality 
[REQ-0-SRD-1510] The system shall deliver a H-band resolution of 14 milliarcsecs with a 
Strehl ratio greater than 0.9. 

3.6.3.5 Spatial sampling 
[REQ-0-SRD-1515] Critically sampled at 1µm (O/2D =0.0035 arcsec) 

3.6.3.6 Spectral resolution 
[REQ-0-SRD-1520] R � 100 

Discussion: An IFU is likely to be more useful than a slit 

3.6.3.7 Achievable contrast with coronagraph 
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[REQ-0-SRD-1525] The system should reach planet detection sensitivity of 108 before 
systematic errors dominate. This should be achieved in H band on stars with I< 8 mag and 
at working distances of 50 mas. The goal is 109.  
[REQ-0-SRD-1530] For younger, distant, dusty stars (such as Taurus) may require IR WFS 
but have brighter planets, so the goal is planet detection sensitivity of 106 with H<10 at inner 
working angles of 30mas, with a goal of 5x106.  

Discussion: Contrast is defined as the 5-V ratio of primary star brightness to the 
residual speckle and photon noise, i.e., the spatial standard deviation of the final 
intensity of the PSF halo in a small region. 

Discussion: Speckles are expected to be the major background limiting reliable planet 
detection. Speckle amplitude is defined (for TMT) as the 5-V amplitude of speckle 
brightness. 

It is expected that suitable data gathering methods and data reduction methods will 
allow reliable planet detection to take place at 1/10 of the speckle amplitude. Thus, the 
actual telescope quality should be such that contrasts 10x smaller than the above 
numbers should be produced by the telescope and PFI system, prior to data reduction. 

3.6.3.8 Polarization 
[REQ-0-SRD-1535] Detect polarized light (e.g., from scattering off circumstellar dust) at a 
level of 1% of the residual stellar halo, and measure absolute polarization to an accuracy of 
10%. 

3.6.4 Near-IR Echelle Spectrometer (NIRES) 
3.6.4.1 General Description 

The NIRES spectrometer (likely two instruments) will generally be used with a diffraction-
limited slit for point sources. It will be placed behind the early light AO system (NFIRAOS) that 
delivers a high quality image over a small field of view. We assume an 8kx8k detector mosaic 
will be available.  

3.6.4.2 Wavelength Range 
[REQ-0-SRD-1600] 1µm- 5µm 
[REQ-0-SRD-1605] Simultaneous coverage from 1.0µm-2.4µm or from 3.5µm-5.0µm at a 
resolution of R > 20,000 

Discussion: Because of the wide wavelength coverage, we expect that NIRES will 
actually be two instruments, one for the NIR (1-2.5µm, NIRES-B) and the second for 
3.5-5µm (NIRES-R). 

3.6.4.3 Field of view of field acquisition camera 
[REQ-0-SRD-1610] An acquisition camera with field of view of 10 arcsec is needed, Nyquist 
sampled at 1µm (0.0035 arcsec per pixel) 

3.6.4.4 Length of slit 
[REQ-0-SRD-1615] A slit length of ~2 arcsec is needed, to provide the ability to nod along 
slit to improve background subtraction.  

3.6.4.5 Image quality 
[REQ-0-SRD-1620] The spectrometer should deliver diffraction-limited images to the 
detector, as delivered by the AO system. 

3.6.4.6 Spatial sampling 
[REQ-0-SRD-1625] Nyquist sampled (O/2D) (0.004 arcsec) 

3.6.4.7 Spectral resolution 
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[REQ-0-SRD-1630] R~20,000 (1-2.5 µm); R~100,000 (3-5 µm) 
3.6.4.8 Background 

[REQ-0-SRD-1635] The instrument should not increase the (inter-OH) background by more 
than 15% over natural sky (see Appendix 4) + telescope background (assume 5% emissivity 
at 273K). 

3.6.4.9 Detector 
[REQ-0-SRD-1640] Detector dark current and read noise shall not increase the effective 
background by more than 5% for an integration time of 2000 s. 

Discussion: In the 1-2.5µm region, dark current �0.002 e-/s and read noise � 3e- after 
multiple reads should be sufficient. 

3.6.4.10 Throughput 
[REQ-0-SRD-1645] High throughput is a priority for this instrument; > 20% should be 
achievable. 

3.6.5 High-Resolution Optical Spectrometer (HROS) 
3.6.5.1 General description 

HROS will provide high spectral resolution data in the optical range, suitable for detailed study 
of stars, quasars, and planet radial velocity programs. 

3.6.5.2 Wavelength range 
[REQ-0-SRD-1700] 0.31µm- 1.1µm, goal 0.31-1.3µm 
Discussion: Working into the infrared is scientifically valuable, but CCDs cut off at 1.1µm. 
New detectors would be needed to reach the long wavelength limit. 

3.6.5.3 Field of view 
[REQ-0-SRD-1705] >10 arcsec for the acquisition camera/slit viewing camera 

3.6.5.4 Slit length 
[REQ-0-SRD-1710] A slit length of >5 arcsec is needed, with > 5” separation between 
orders 

3.6.5.5 Image quality 
[REQ-0-SRD-1715] Image quality at the detector (including only HROS optics) should be no 
worse than 0.2 arcsec FWHM 

3.6.5.6 Spatial sampling 
[REQ-0-SRD-1720] Sampling should be no coarser than 0.2 arcsec, to adequately sample 
the best optical images provided by the telescope 

3.6.5.7 Spectral resolution 
[REQ-0-SRD-1725] R=50,000 (1 arcsec slit, image slicer for R�90,000) 

Discussion: Options include single slit, fiber feed for multiplexing 

3.6.5.8 Sensitivity 
[REQ-0-SRD-1730] Must maintain 30m aperture advantage over existing similar 
instruments. This would imply throughput >20% from telescope focal plane to detected 
photons. 

3.6.6 Wide-field InfraRed Camera (WIRC) 
3.6.6.1 General description 

WIRC is envisioned to work behind a moderate field, diffraction-limited multi-conjugate AO 
system (MCAO). It should provide superlative diffraction-limited images through a variety of 
filters, providing excellent photometric accuracy and high quality astrometric information. 
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Discussion: Given the expected MCAO nature of NFIRAOS and its field of view, it quite 
possible that WIRC will be fed by NFIRAOS. It may also be the case that an adequate 
approximation to WIRC may be provided by the imaging camera of IRIS. Hence, 
whether WIRC becomes a distinct instrument is currently uncertain. 

3.6.6.2 Wavelength range 
[REQ-0-SRD-1800] 0.8µm- 5µm, goal 0.6µm-5µm 

Discussion: Note that no planned AO system currently works well in the 2.5-5µm range.  

3.6.6.3 Field of view 
[REQ-0-SRD-1805]  > 30 x 30 arcsec (contiguous field). 

3.6.6.4 Image quality 
[REQ-0-SRD-1810] Uncorrectable wavefront errors should be such that they make a 
negligible (<5%) contribution to the AO+instrument error budget. 

Discussion: This needs to be coupled to the AO error budget. 

3.6.6.5 Spatial sampling 
[REQ-0-SRD-1815] Nyquist sampled or better at the observing wavelength, from 1-5 µm. 

Discussion: This need is clearly wavelength and field angle dependent. 

3.6.6.6 Background 
[REQ-0-SRD-1820] The instrument should not increase the (inter-OH) background by more 
than 15% over natural sky (see Appendix 4) + telescope background (assume 5% emissivity 
at 273K). 

3.6.6.7 Spectral Resolution 
[REQ-0-SRD-1825] R = 5-100 with a range of broad, medium, and narrow-band filters that 
are changed infrequently. 

3.6.6.8 Throughput 
[REQ-0-SRD-1830] Throughput is a key consideration for this instrument. The requirement 
is for the throughput to be as good as other existing instruments, to preserve the aperture 
advantage of the telescope. 

3.6.6.9 Repeatability, stability, flexure 
[REQ-0-SRD-1835] Allow mosaicing of multiple fields together with no more than 1% image 
quality degradation. 

Discussion: This implies a stable and well-characterized plate scale and a small 
amount of optical distortion. 

3.6.6.10 Astrometry 
See requirements for NFIRAOS and IRIS.  

 POSSIBLE ADDITIONAL INSTRUMENTS 

3.7.1 GLAO Near-IR Multi-object Imaging Spectrometer 
Depending on the site characteristics, it may be advantageous to develop a ground layer AO 
system. Such a system would probe the atmosphere over a wide angle, and the average of 
these wavefronts would largely represent the ground layer of the atmosphere. This average 
could then be corrected by an AO system and would result in improved image quality over a 
large field of view. A near IR multi-object spectrometer (R~ 4000) could then work over this 
large field of view (> 5 arcmin) with significantly improved image quality and hence sensitivity. 
The AO correction may be internal to the instrument or could be provided by an adaptive 
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secondary. The early light IRMS instrument may allow some fraction of the science to be 
done, albeit over a 2 arcmin field of view.  

3.7.2 Mid-IR Diffraction-limited Imaging Spectrometer 
Although MIRES will have superb very high spectral resolution properties, there may be 
significant science interest in lower spectral resolution (R~5-100) and diffraction limited 
imaging in the mid-IR over a larger field than that provided by MIRES. 

 DATA HANDLING 
[REQ-0-SRD-1900] The observatory should provide the basic ability to archive all science 
data collected by the science instruments. 
[REQ-0-SRD-1905] All associated engineering data should be stored and should be 
available for data reduction. 
[REQ-0-SRD-1910] At a minimum all the data collected should be stored and made 
available to the scientist responsible for the data.  
[REQ-0-SRD-1915] Only a relatively simple data archive is required.  

Discussion: Although desirable, we do not require that the Observatory make all 
science data available to anyone who wants it. As a goal, we want a broadly accessible 
and useful data archive. 

[REQ-0-SRD-1920] The science instruments are expected to deliver basic data reduction 
pipelines that are suitable to the data that each instrument generates. As a goal, we want the 
Observatory to provide complete data reduction packages that can provide publishable data 
sets.  
[REQ-0-SRD-1925] The instrument teams will deliver basic data reduction software to the 
Observatory 
[REQ-0-SRD-1930] Observatory has responsibility for maintaining and upgrading such 
software. 

 NIGHTTIME OPERATIONS MODELS 
[REQ-0-SRD-1950] The Observatory should provide to the astronomer a working telescope 
and suitable instruments to support the astronomers proposed work.  
[REQ-0-SRD-1955] Appropriate personnel should be provided to properly and efficiently use 
the telescope and instruments and ensure they are working properly. 

Discussion: We do not expect the astronomer will understand all the technical details of 
the observatory or instruments, thus some technical support will be essential. 

[REQ-0-SRD-1960] Queue scheduling is not required 

Discussion: Although significant efficiencies may result from the use of queue 
scheduling, where the actual observing program is chosen to best fit the local observing 
conditions, we do not require that the Observatory provide this level of support. As 
experience develops we may increasingly migrate to this mode of observing, so the 
observatory design should not preclude or hinder the possible future use of such a 
model of observing. 

[REQ-0-SRD-1965] To encourage maximum use of the telescope in changing conditions, all 
the science instruments should be available on every night, whenever possible. 
[REQ-0-SRD-1970] An astronomer should be able to switch from one instrument to another 
in no more than 10 minutes. 
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4. APPENDICES 

 APPENDIX 1: ATMOSPHERIC TRANSMISSION FOR THE SUMMIT OF MAUNA KEA 
A ground-based telescope is limited in the wavelengths it can observe. This is set fundamentally by 
the transparency of the atmosphere, shown here. These typical transmission curves will differ 
somewhat from site to site and under varying conditions. Different molecules cause the absorption 
features, and in the infrared, water is the dominant absorbing molecule. The amount of precipitable 
water is strongly dependent on site elevation; higher elevation sites will generally have better 
atmospheric transmission, particularly longward of 10µm. We require that the telescope be functional 
with high throughput from 0.31µm to 30µm. Details of the spectrum are given by Lord. 

  
Figure 4-1 Atmospheric transmission in near-infrared (< 6 µm) - Mauna Kea 
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Figure 4-2 Atmospheric transmission in mid-infrared (5 - 30 µm) - Mauna Kea 

 APPENDIX 2: STREHL RATIO FOR VARIOUS WAVELENGTHS AND WAVEFRONT 
ERRORS 
It is frequently useful to describe AO –achieved image quality by its Strehl ratio (S). The Strehl ratio is 
the image peak intensity divided by the maximum (diffraction-limited) peak intensity. For S>0.2 one 
can approximate S as exp(-(2ʌı/Ȝ)2) where ı is the rms wavefront error. Plots of this for a range of 
wavelengths and wavefront errors are shown below. For S>0.2 S is also an excellent approximation 
to the fraction of the PSF energy that is within the shape of a perfect diffraction-limited PSF. 
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Figure 4-3 Strehl ratio versus wavelength (< 10 µm) 

 
Figure 4-4 Strehl ratio versus wavelength (< 3 µm) 
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 APPENDIX 3: REFLECTIVITIES OF POTENTIAL MIRROR COATINGS 
Mirror reflectivity is the most critical parameter limiting throughput. Figure 4-5 and Figure 4-6 show 
the reflectivity of Aluminum, Silver, and Gold as a function of wavelength. Most large telescopes have 
their optics coated with Aluminum. Thus, with a 3-mirror optical system, approximately 30% of the 
collected light is lost with Aluminum coatings. Recently developed multi-layer coatings have 
demonstrated >95% reflectivity from 340nm to 10 µm. The Keck LRIS collimator coating developed 
by LLNL is shown in the figure. Coatings of this type will improve throughput by ~ 15% and are 
essential for TMT. Since TMT is a three mirror telescope, the throughput at any wavelength will vary 
as the cube of the single mirror reflectivity curve. Actual optics also become dirty and age, so 
average reflectivities will be lower than those of the fresh coatings. 

 
 

Figure 4-5 Reflectivities of Metals and LRIS coating (0.3 - 1 µm) 
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Figure 4-6 Reflectivities of Metals and LRIS coating (< 5 µm) 

 APPENDIX 4: SKY AND THERMAL BACKGROUNDS 
Shown below is the emission from the night sky in the near infrared. Also shown are typical fluxes in 
standard photometric bands. For reference, we also show the expected flux from a blackbody at the 
indicated temperatures. The finite reflectivity of the optics will cause some fraction (emissivity) of the 
blackbody radiation to be emitted by the optics. Such local background sources will be added to the 
natural night sky flux. 
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Figure 4-7 Sky (MK) and Blackbody flux versus wavelength 

 APPENDIX 5: STANDARD ATMOSPHERE ASSUMPTIONS 
In order to define the AO performance requirements, we define “Standard Conditions” under which 
the requirements should be met. When conditions differ from these, performance may be better or 
worse. The conditions are based on an Armazones profile believed to represent median conditions of 
the atmosphere at the selected site, and are given below (parameters are for a wavelength of 0.5µm) 
 T = 281° (90% between 2.5° and 11.3°) 
 Precipitable H2O = 2.9mm 
 r0 = 0.16m 
 L0 = 30m (highly uncertain, will make image size ~ 15% smaller than Kolmogorov atmosphere- 
see Tokovinin (2002)). This produces an effective r0 that can be used to predict image size. 
Effective r0 = 0.10, 0.20, 0.30m (10, 50, 90 percentile) 
 ș0 = 2.00 arcsec 
 Ĳ0 = 3 ms 
integrated Cn2 = 3.20e-13 m1/3 
 observations at the zenith 
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Table 4-1:  Cn2 profile of standard atmosphere 

h(km) % total Cn2 

0 0.54 

0.5 0.05 

1.0 0.01 

2.0 0.05 

4.0 0.09 

8.0 0.14 

16.0 0.12 
  

șiso = 41 arcsec. The isokinetic angle is the angular difference which produces an rms tip-tilt error of 7 
milli-arcsec. The tip-tilt error grows approximately linearly with angular separation, depends on the 
Cn2 profile, the telescope diameter, and is wavelength independent. 
 
Ĳiso = 10ms The isokinetic time constant is the time it takes for the rms tip-tilt component to change by 
7 milli-arcsec. This value is not well known and depends on details of the vertical wind profile as well 
as the diameter of the telescope. The rms tip-tilt error grows approximately linearly with delay time. 

 APPENDIX 6: STAR DENSITIES AND SKY COVERAGE FOR TIP-TILT STARS 
The use of laser beacons for measurements of atmospheric wavefront errors implies that any tip-tilt 
components cannot be measured by the laser beacons and must be separately measured with 
natural guide stars (tip-tilt stars). Ideally, sky coverage analysis would use real stellar catalogs 
obtained from wide-field, deep surveys. However, such catalogs, especially in the near-infrared, do 
not yet exist (although they will exist within the near future). Therefore, we use models of the Milky 
Way to generate the star counts that are then incorporated into the TMT sky coverage analysis. 
 
To date, we have used three different Milky Way models for sky average analyses: 1) Bahcall & 
Soneira (1980, ApJ Suppl. 44, 73) (RD10), 2) Spagna (2001, STScI-NGST-R-0013B) (RD9), and 
3).Besançon (Robin, Reyle, Derriere, Picaud 2003, A&A, 409, 523; (RD14)) .The Besançon model 
has four advantages over the other two models: 1) the output of the Besançon model is a star 
catalog as opposed to number counts, which gives the user access to colors as well as counts, 2) 
the Besançon model is the most modern Milky Way model, incorporating the latest knowledge of 
initial mass functions and the different kinematic components (especially compared to Bahcall & 
Soneira), 3) the Besançon model is refereed, well-cited, and can produce custom catalogs through 
an easy-to-use web interface (especially compared to the Spagna model), 4) the Besançon model 
can be used to generate optical and near-infrared star counts (the Spagna model gives near-infrared 
counts and the Bahcall & Soneira model gives optical counts). Despite the differences between the 
models, the predicted number counts are similar (see figure below). This is particularly true for the 
density of faint stars in J band at the galactic pole, i.e., the case which has been considered for all 
LGS MCAO sky coverage analysis to date. Because of the advantages, of working with the 
Besançon model, it will be adopted for use in future sky coverage analysis. 



                     TMT.PSC.DRD.05.001.CCR22   Page 48 of 50 

                   SCIENCE REQUIREMENTS DOCUMENT  MARCH 28, 2017 

 
Figure 4-8 Comparison of the cumulative stars per square degree at a given magnitude predicted by 

different star count models. 

Comparison of the cumulative number of stars per square degree at a given magnitude predicted by 
the Besançon model (solid lines) versus the Bahcall & Soneira model in V-band (open squares) and 
the Spagna model in J and K-bands (closed circles). This comparison is made at galactic latitudes of 
90° (red), 50° (green) and 30° (blue) and a galactic longitude of 0°. The predicted number counts of 
the different models are all in close agreement. [Need to fix the legend in the J and K magnitude 
plots] 

 APPENDIX 7: ASTROMETRIC CONSIDERATIONS 
Astrometry with adaptive optics is not yet a mature field of endeavor and all issues associated with it 
are not understood. In general, the more stars in a field of view, the better slowly varying distortions 
can be removed and real differential motions measured. As shown in Astrometry with TMT (RD15) 
experience at Keck Observatory suggests that the achievable precision varies as 1/¥ t and that a 
precision of 100µas can be achieved in 2 minutes. 
 
An astrometric MCAO system must constrain quadratic field distortions using either a single natural 
guide star (NGS) that is bright enough to sense defocus and astigmatism or provide two additional 
tip-tilt stars, making their total number 3. The differential tilts between the three tip-tilt stars constrain 
these modes. This requirement occurs because the tip and tilt of laser guide stars (LGS) are 
undetermined. As a consequence, the information brought by them is insufficient for a full solution of 
the tomographic problem. In addition to tip and tilt, differential astigmatism and defocus between the 
two DMs is unconstrained. These three unconstrained modes do not influence on-axis image quality, 
but produce differential tilt between the different parts of the field of view. 
If multiple tip-tilt sensors are used, the MCAO system must provide for a facility to align them. If the 
tip-tilt sensors for the three NGSs are misplaced, the MCAO system will compensate these errors in 
the closed loop, hence the field will be distorted. For example, the plate scale will change if the upper 
DM has a static defocus. Calibration procedures must be applied to ensure that these errors do not 
compromise the astrometric performance of an MCAO system (e.g., flattening of the upper DM 
before closing the loop). 
To ease the astrometric challenge, the static distortions in the field of view should be under 10% 
(goal 1%). 

 APPENDIX 8: ATMOSPHERIC DISPERSION 
The index of refraction of the atmosphere at Mauna Kea is well approximated by the formula 
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where Ȝ is the wavelength in units of µm.  (Nelson, 1994, Atmospheric Refraction at Mauna Kea, 
Keck Technical Note 400, (RD13)) 
 
At different sites the index of refraction (n-1) will be proportional to the air density. 
 
The atmosphere disperses light entering away from the zenith (z = zenith angle) and the length of 
this image blur is given by  

 
Table 4-2 gives the dispersive blur within various atmospheric windows of interest, evaluated for a 
zenith angle of 45° for Mauna Kea. We also list the diffraction limited image size (Ȝ/D) and compare 
them. When the dispersed image is larger than the diffraction limit, atmospheric dispersion 
compensation (ADC) will be useful.  When this ratio is less than 1, it can probably be omitted, 
depending on the actual error budget of the system under consideration. 
 

Table 4-2 :Dispersive blur within various atmospheric windows of interest 

Band Wavelength 

(µm) 

Full Width 

(µm) 

Dispersive Blur 

(µm) 
Diffraction O/D 

(arcsec) 

Blur/diff 

U 0.365 0.068 -0.6262 0.0025 -249.54 

B 0.440 0.098 -0.5055 0.0030 -167.09 

V 0.550 0.090 -0.2323 0.0038 -61.44 

R 0.700 0.220 -0.2688 0.0048 -55.85 

I 0.900 0.240 -0.1345 0.0062 -21.73 

J 1.250 0.380 -0.0768 0.0086 -8.94 

H 1.680 0.300 -0.0242 0.0116 -2.10 

K 2.200 0.480 -0.0168 0.0151 -1.11 

L 3.400 0.700 -0.0064 0.0234 -0.27 

M 4.770 0.460 -0.0015 0.0328 -0.04 

N 10.470 5.200 -0.0014 0.0720 -0.02 
  

 APPENDIX 9: ENCLOSED ENERGY OF IMAGES FROM A KOLMOGOROV ATMOSPHERE 
A Kolmogorov model of the atmosphere is often considered a useful approximation to the real 
complexities of the atmosphere. The basic imaging performance of such an atmosphere can be 
derived from a single parameter, the Fried parameter r0. Excellent astronomical sites can have 
median atmospheric conditions with r0 = 0.15 m. We have set our overall observatory image quality 
requirement in this language, and specified it as r0 = 0.8m. 
In order to understand the implication of this specification, we calculate the PSF and the enclosed 
energy functions for this atmosphere. 
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The MTF is given by  

 

where    and Ȝ is the observing wavelength. 
and the point spread function is given by 

 
and the enclosed energy is given by 

 
 
Furthermore, these functions will scale inversely with r0. Doubling r0 will halve the image size. For a 
given r0 at a given wavelength, changing wavelength will change r0, and thus the image size. The 
image size produced by a Kolmogorov atmosphere varies as 

 
In the figure, we show the PSF and the radius of the circle that encloses a given fraction of the total 
energy in the image. These are generated for r0 = 0.2m, and can be readily scaled to any other value 
of r0. 
 
More details about these equations and related ones can be found in Keck Technical Note 331, Point 

Spread Functions in Astronomy (Mast, 1992)(RD16).

  
Figure 4-9 Image PSF and EE for Kolmogorov atmosphere 


