Tmt night


The telescope optical design is a folded Ritchey-Chrétien. Both the primary and secondary mirrors are hyperboloidal, and together they form a well-corrected focus. The tertiary mirror is used to fold and steer the light path so that the science beam can be delivered to any of eight instruments that will be mounted on the two main Nasmyth platfoms. The image is formed 20 meters from the center of the tertiary mirror. The focal ratio of the telescope is f/15.

Primary Mirror

Parameter Value
Aperture, m 30 
Number of segments 492
Focal Ratio f/1
Paraxial Radius, m 60 
Conic -1.000953, Hyperboloid
Segment thickness, mm 45
Mass, metric tons 121
Segment gaps, mm 2.5

The primary mirror focal ratio is f/1. This short focal ratio was chosen to make the telescope compact, which helps to keep the telescope structure and the enclosure affordable. As the name implies, the primary mirror is 30 meters (98 feet) in diameter, and because it is f/1 it has a focal length of 30 meters.

Following the lead of the highly successful Keck 10-meter telescopes, the TMT primary mirror is segmented  including a total of 492 hexagonal elements, each about 1.44 meters (56.6 inches) across corners. The segments are closely spaced, with gaps between the segments only 2.5 mm (0.1 inch) wide.

By dividing the aperture into segments of manageable size, many of the difficulties involved in the construction of large telescopes are reduced, including fabrication, testing, risk mitigation and transportation of large mirrors and mirror cells. The need for large handling equipment, high-capacity handling cranes and large vacuum coating chambers is also greatly reduced.

The segments will be made from zero expansion glass or glass ceramic. Depending on the material choice, the glass will be between 45 and 50 mm thick (about 2 inches).

Each segment has a support system that holds it in position without distortion from gravity. Twenty-seven thin flexures are attached to the back of the mirror and the weight of the segment is reacted by a “whiffletree” lever system that spreads the load in the correct proportions to avoid distorting the shape of the segment. The lateral support (required when the telescope points towards the horizon) is provided by a central metallic diaphragm recessed into the glass. The segment support system is illustrated in the figure below.

Secondary Mirror

The secondary mirror reflects the light from the f/1 primary mirror and converts it to an f/15 beam for the science instruments. The mirror is 3.1 meters (10 feet) in diameter, as large as the primary mirrors of many telescopes currently in use.

It will be mounted in a steel mirror cell that contains the axial and lateral supports for the mirror. The mirror supports are active and can correct the shape of the mirror, for example correcting errors that may be caused by the changing zenith angle and temperature.

The mirror cell is held in alignment in the telescope by a hexapod positioning system that can move and tilt the secondary mirror in all degrees of freedom.

Tertiary Mirror

The tertiary mirror is a large flat mirror, located in the center of the primary mirror, that is used to direct the telescope image to the instruments on the Nasmyth platforms. The mirror is elliptical in shape, 3.5 × 2.5 meters (11 ½ x 8 feet) across.

The tertiary mirror must be able to switch among the science instruments rapidly and precisely, and it must be able to track in two axes to keep the beam aligned with the instrument as the telescope changes zenith angle. One of these axes (the “rotation” axis) is coincident with the primary mirror optical axis, and the other (the “tilt” axis) is perpendicular to that axis.

This animation shows how light will travel between the TMT mirrors to reach the science instruments


Primary and Tertiary Mirrors

Primary and Tertiary Mirrors

M2 render

Secondary Mirror

M3 render

Tertiary Mirror